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Abstract  

The escalating prevalence of prediabetes in Indonesia, particularly among children 
and adolescents, necessitates the development of lightweight, adaptable, and cost-
effective telemedicine solutions for the noninvasive monitoring of blood glucose 
levels. Existing systems predominantly employ machine learning and deep learning 
approaches that require substantial computational resources and stable internet 
connectivity, limiting their applicability in regions with constrained digital 
infrastructure. The objective of this study is to develop an artificial intelligence (AI)–
driven telemedicine system that employs an expert system to determine prediabetes 
status by utilizing commercially available smartwatches as noninvasive optical 
sensors. The methodological approach includes an examination of smartwatch 
capabilities to identify Bluetooth Low Energy (BLE) sensors, service architectures, 
and the Generic Attribute Profile (GATT); the development of a Rule-Based Reasoning 
(RBR) expert system to determine prediabetes status using Fasting Plasma Glucose 
(FPG) and Postprandial Plasma Glucose (PP2) measurements; and the application of 
Rapid Application Development (RAD) methods in the development of Flutter-based 
mobile applications and Laravel Inertia Vue–based web applications. The results of 
this study demonstrate that the telemedicine system operates in both offline and 
online modes and incorporates AI functionality on mobile devices and servers 
without requiring extensive computational resources. All system functionalities 
successfully passed testing, and the expert system achieved 100% accuracy in 
determining prediabetes status. In conclusion, the integration of telemedicine and AI-
based expert systems provides an effective, economical, and flexible solution that 
can be widely implemented in Indonesia to reduce the increasing incidence of 
prediabetes through continuous digital health monitoring. 
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I. Introduction 

At present, Indonesia ranks third globally in the 
prevalence of prediabetes, following China and the United 
States. According to a study conducted by the Indonesian 
Health Research and Development Agency (Balitbang 
Kemenkes RI) in 2018, the prevalence of prediabetes 
among individuals aged 15 years and older was 8.5%. A 
study conducted in the United States reported that during 
the period from 2005 to 2016, one in five adolescents and 
one in four young adults were identified as having 
prediabetes [1]. More recent epidemiological data indicate 
that the prevalence of diabetes in Indonesia increased 
from 10.7% in 2013 to 11.8% in 2018, before slightly 
declining to 11.3% in 2023, while the prevalence of 
prediabetes decreased from 44.5% in 2013 to 39.2% in 
2023. Long-term projections indicate an even more 

concerning trend, with the number of Indonesians living 
with diabetes expected to increase sharply from 18.69 
million cases (9.19%) in 2020 to 40.7 million cases 
(16.09%) by 2045, positioning diabetes as a major public 
health challenge in the coming decades [2], [3]. Globally, 
diabetes prevalence has also increased substantially, 
rising from 2,968 per 100,000 population in 1990 to 5,943 
per 100,000 in 2019, with the global number of individuals 
with diabetes projected to grow from 171 million in 2000 
to 366 million by 2030. The Southeast Asia region, 
including Indonesia, currently ranks third in regional 
prevalence at approximately 10%, following the Middle 
East and North Africa (18.1%) and North America and the 
Caribbean (11.9%). Supporting this trend, a study in the 
United States reported that between 2005 and 2016, one 
in five adolescents and one in four young adults were 
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already living with prediabetes, highlighting the increasing 
vulnerability of younger populations worldwide [2], [3]. 

Prediabetes represents the initial stage preceding the 
onset of diabetes. It is characterized by blood glucose 
levels that exceed normal thresholds but remain below the 
diagnostic criteria for diabetes. Individuals diagnosed with 
prediabetes may return to normoglycemic levels through 
the adoption of a healthy lifestyle, including dietary 
regulation and regular physical activity [4]. In contrast, 
once an individual progresses to diabetes, the condition 
is irreversible and requires lifelong management through 
lifestyle modification and pharmacological therapy, 
including insulin administration [5]. This progression 
renders diabetes a degenerative condition that affects not 
only older adults but also children and adolescents. The 
increasing prevalence of prediabetes and diabetes 
among children and adolescents is primarily associated 
with unhealthy lifestyle patterns, particularly the 
consumption of sugar-rich foods and beverages that are 
readily accessible in various environments. 
Consequently, blood glucose levels may increase further 
when physical activity is limited among these populations.   

Blood glucose assessment can be performed using 
invasive or noninvasive methods. The invasive method, 
which remains the clinical standard, involves blood 
sample collection followed by laboratory analysis [6]. 
However, this approach may cause discomfort, 
particularly among children and adolescents, due to the 
associated pain. In contrast, noninvasive blood glucose 
measurement methods—most commonly utilizing near-
infrared optical sensors—offer greater comfort and 
practicality [7]. Notably, contemporary devices used for 
noninvasive monitoring are commonly integrated into 
smartwatches, enabling routine daily use among children 
and adolescents. As a result, noninvasive blood glucose 
monitoring using wearable devices presents a feasible 
approach for supporting early detection and prevention of 
prediabetes among adolescents in Indonesia. 

Currently, extensive studies are underway to enhance 
noninvasive blood glucose measurement devices that 
utilize optical sensor technology. One such study [8] 
developed an Internet of Things (IoT)–based device 
employing the MAX30105 optical sensor to 
simultaneously measure blood glucose, cholesterol, and 
uric acid levels. The resulting device is configured as a 
box measuring 15 × 15 cm, in which measurements are 
obtained by placing a finger on the sensor, with the results 
displayed on an LCD screen. In addition, measurement 
data can be accessed through web applications using the 
Adafruit IO platform as well as through Android mobile 
applications. Comparable studies on the development of 
IoT-enabled devices integrated with web and mobile 
applications have been conducted by other researchers  
[9], [10]. However, the device has not been optimized for 
prediabetes detection, and its physical dimensions are 
considered impractical for routine daily use. 

Additional studies have focused on the development of 
smartwatch-based systems that incorporate sensors for 
real-time blood glucose measurement, thereby improving 

user convenience at any time [11]. These smartwatches 
are designed to integrate with mobile applications that 
record measurement results and subsequently use the 
data to predict future blood glucose levels based on user 
activities. The system employs deep learning–based 
artificial intelligence to support these predictions. Similar 
systems that use smartwatches as wearable sensors in 
combination with mobile applications as user interfaces 
have also been examined by other researchers [12], [13], 
[14]. Although these systems are effective for individuals 
with type 1 diabetes, they currently lack features that allow 
monitoring by healthcare professionals or family 
members. 

In another study, wearable sensors were attached to 
three different locations on a patient’s body to measure 
temperature, pressure, and glucose levels. The system 
was also integrated with the insulin delivery device used 
by the patient. In addition, the system included data 
transmission capabilities to cloud-based platforms, 
enabling access through medical tablet devices 
monitored by healthcare professionals. The system 
further incorporated artificial intelligence algorithms to 
manage cloud-stored data, enabling predictive analysis 
and supporting healthcare professionals in providing 
targeted therapeutic interventions [15]. However, such 
integrated systems are largely limited to hospital-based 
patient care, and the implementation of smartwatches as 
sensing devices has not yet been realized. Moreover, the 
system is restricted to monitoring patients diagnosed 
exclusively with diabetes. 

This study is motivated by several gaps that remain 
unaddressed in previous studies. Most existing systems 
focus exclusively on individuals who have already been 
diagnosed with diabetes, despite the fact that early 
identification at the prediabetes stage is more impactful 
because individuals at this stage retain the potential to 
return to normal glycemic conditions. Prior systems also 
rely heavily on machine learning or deep learning models 
that require substantial computational resources and 
cloud-based processing, limiting their suitability for cost-
effective mobile telemedicine applications. In contrast, 
this study employs a lightweight rule-based expert system 
that operates efficiently on smartphones. In addition, 
although commercially available smartwatches equipped 
with noninvasive glucose sensors are increasingly 
accessible, their affordability and suitability for adolescent 
users have not been systematically assessed. Finally, 
earlier telemedicine systems generally offer limited 
monitoring capabilities, whereas this study introduces a 
multi-role system that allows adolescents, parents, and 
healthcare professionals to collaboratively monitor 
glucose data through an integrated mobile and web 
platform. Building upon the identified gaps, this study aims 
to develop an integrated telemedicine system that utilizes 
commercially available smartwatches as noninvasive 
glucose sensors, combined with mobile and web 
applications, for prediabetes monitoring in children and 
adolescents. To achieve this objective, the study is guided 
by three key questions: (1) How can glucose 
measurement data be programmatically accessed and 

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/ijeeemi.v8i1.283
https://creativecommons.org/licenses/by-sa/4.0/


 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics 
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 40-55, February 2026  

e-ISSN: 2656-8624 

 

Corresponding author: Siti Aisyah Solechah, siti.solechah@ulm.ac.id, Department of Public Health, Lambung Mangkurat University, Jl. 
Jendral A. Yani Km 36, Banjarbaru, Indonesia  
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.283 
Copyright © 2026 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work 
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).  

 
42 

retrieved from commercial smartwatches for integration 
into mobile applications? (2) What rule-based expert 
system can accurately determine prediabetes status 
using Fasting Plasma Glucose (FPG) and Postprandial 
Plasma Glucose (PP2) values? (3) What functional 
features are required for mobile and web platforms to 
support multi-role telemedicine involving adolescents, 
parents, and healthcare professionals? Addressing these 
questions enables the development of a real-time, 
noninvasive, and cost-efficient monitoring system. The 
resulting platform supports collaborative monitoring 
among users and healthcare providers, offering a 
practical early-intervention tool to help prevent 
progression from prediabetes to diabetes. 

This study is organized as follows: Section II describes 
the methodologies employed in this study and outlines the 
study trajectory. Section III presents the study findings. 
Section IV discusses the study outcomes and associated 
limitations. Section V presents the conclusions, 
summarizing the objectives, main findings, and future 
work.  

 

II. Methods 

The study methodology comprises three principal stages, 
as illustrated in  Fig. 1. The initial stage includes (A) 
Smartwatch Exploration, (B) Expert System 
Development, and (C) Software Engineering. 

A. Smartwatch Exploration 

 

Fig. 1. Research stages. 
 

 
Fig. 2. BLE Protocol Stack [21]. 
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This stage aims to identify a smartwatch suitable for use 
as a wearable device equipped with blood glucose 
measurement sensors. The selection criteria are based 
on the following attributes: 

• Infrared noninvasive blood glucose sensor 

• Bluetooth Low Energy (BLE) connectivity 

• Generic Attribute Profile (GATT) 

• Data security 

• Price 

The infrared-based noninvasive blood glucose sensor 
enables blood glucose assessment without blood 
sampling, thereby improving convenience for pediatric 
and adolescent users. This technology uses infrared 
radiation directed at the skin surface, where the 
absorption and reflection of light by body tissues are 
analyzed to detect changes in optical characteristics 
associated with glucose concentration. This approach 
applies principles of optical spectroscopy, including the 
Beer–Lambert Law and artificial intelligence algorithms, to 
convert optical signals into estimated glucose 
concentrations. By applying machine learning techniques 
capable of identifying complex patterns in light signal 
variations, blood glucose levels can be estimated [16], 
[17], [18]. 

Bluetooth Low Energy (BLE) connectivity is a critical 
component, as it enables efficient transmission of 
measurement data from smartwatches with minimal 
energy consumption. BLE supports continuous 
communication with low latency and adequate throughput 
for sensor data, allowing health metrics to be transmitted 
to smartphones in real time without excessive battery 
drain in wearable or mobile devices [19], [20]. Fig. 2 
illustrates the Bluetooth Low Energy (BLE) protocol stack, 
which is organized into three main blocks: the Controller 
(gray), the Host (blue), and the Application (App) (green). 
The Application layer, located at the top of the stack, 
serves as the direct interface with the user and defines 
application profiles that ensure interoperability across 
devices by standardizing common functionalities, as 
specified by the Bluetooth Special Interest Group (SIG), 
while still allowing vendor-specific profiles for specialized 
use cases. The Host layer comprises the Generic Access 
Profile (GAP), Generic Attribute Profile (GATT), Logical 
Link Control and Adaptation Protocol (L2CAP), Attribute 
Protocol (ATT), Security Manager Protocol (SMP), and 
the host-side Host Controller Interface (HCI), which 
collectively manage device discovery, attribute handling, 
logical connections, and security processes. Meanwhile, 
the Controller integrates the controller-side HCI, the Link 
Layer (LL), and the Physical Layer (PHY), which together 
handle low-level radio operations and data transmission 
[21], [22]. Within this architecture, GATT plays a critical 
role in ensuring that sensor data from the smartwatch can 
be accessed and managed in a standardized format. 
GATT defines the service structure and characteristics 
used to store and transmit measurement values, enabling 
the application to read glucose data, receive update 
notifications, and send commands to the device [23], [24]. 
This structured communication framework ensures 

reliable and secure integration of smartwatch sensor data 
with the mobile application developed in this study. 

To ensure compatibility and determine the BLE service 
structure of smartwatches, GATT was examined using 
BLE diagnostic applications such as nRF Connect [25], 
Wireshark [26], and Bluetooth LE Explorer. Through these 
software tools, researchers can observe service UUIDs, 
characteristic UUIDs, access modes (read, write, notify), 
and descriptors such as the Client Characteristic 
Configuration Descriptor (CCCD), thereby facilitating the 
integration of sensor data with mobile applications under 
development [23], [27]. 

B. Expert System Development 

An expert system is an artificial intelligence framework 
designed to replicate the decision-making processes of a 
specialist within a specific domain. The development of 
such a system requires several core components, 
including a knowledge base that encapsulates expertise 
and rules provided by specialists, an inference engine that 
executes reasoning mechanisms to correlate user inputs 
with predefined rules, and a user interface that facilitates 
interaction between users and the system. Through the 
integration of these components, expert systems are 
capable of autonomously generating decisions [28], [29]. 

In this study, the methodological approach employed 
is Rule-Based Reasoning (RBR). Rule-Based Reasoning 
represents an inferential technique used in expert 
systems that applies rules structured in an IF–THEN 
format to support decision-making and problem-solving 
processes [30], [31]. RBR includes the following essential 
components [32], [33]: 

I. Knowledge Base:  The knowledge base is developed 
through consultations with domain experts, 
particularly health professionals specializing in 
prediabetes and diabetes, as well as through the 
synthesis of conclusions derived from published 
studies. The resulting set of rules is subsequently 
formalized in IF–THEN statements [34]. 

II. Fact Base: The Fact Base consists of data and events 
obtained from user inputs [32], [33]. 

III. Inference Engine: The Inference Engine matches 
facts with rules to generate conclusions [32], [33]. 

RBR is characterized by straightforward 
implementation, minimal computational requirements 
during execution, and transparency in decision-making 
processes. These characteristics make RBR more 
suitable for deployment on resource-constrained devices 
such as smartphones, compared with machine learning or 
deep learning approaches that require greater processing 
power and memory resources [30], [31]. After the rules 
governing the expert system are established, the next 
stage involves translating these rules into algorithms or 
program code. The IF–THEN rules are implemented using 
conditional control structures, enabling applications to 
process inputs and automatically generate decisions. This 
approach allows direct integration of expert system logic 
into mobile application frameworks. 
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A. Software Development 

The software development methodology applied in this 
study is Rapid Application Development (RAD), selected 
for its emphasis on rapid prototyping, iterative 
development, and continuous user involvement 
throughout each stage [35], [36]. Each iteration follows the 
procedure illustrated in Fig. 3. The initial stage is 
Requirement Definition, which aims to identify the system 
requirements. The methodology employed involves 
requirements engineering using Unified Modeling 
Language (UML) modeling. This process is carried out 
through the identification of system actors, the 
specification of functional features, and the analysis of 
system workflows. Supporting this stage are a use case 
diagram, which represents functional features and their 
associated user actors, and an activity diagram, which 
illustrates the application workflow [37], [38]. These two 
external elements serve as the foundational basis for the 
subsequent design stage. The subsequent stage is 
Design, which aims to formulate technical solutions based 
on the requirements established in the preceding stage. 
The methodology applied includes software modeling 
using UML diagrams in conjunction with UI/UX 
prototyping. Outputs of this stage include the system 
architecture, database design, interface design, and 
prototypes [35], [36]. 

The third stage is Construction and Feedback, which 
aims to incrementally develop the system while obtaining 
validation of system functionalities from users and health 
professionals. During this stage, mobile applications are 
developed using the Flutter programming language, while 
web applications are implemented using a frontend–
backend architecture that integrates PHP and JavaScript. 
System usability testing is conducted using a five-point 
Likert scale to assess user perceptions of functionality, 
clarity, and ease of use across both mobile and web 
applications. This method follows black-box testing 
principles, whereby users evaluate system features 
based on observable behavior without reference to the 
internal code structure. Feedback derived from Likert-
scale responses provides a quantitative measure of 
system usability and identifies areas for improvement, 
supporting the assessment of system readiness for wider 

implementation [39]. The range of Likert scale scores is 
presented in TABLE 1 [40]. 

 

Table 1. Likert Scale Interpretation for Software 
Usability 

Likert 
Score 

Category Interpretation 

1 Strongly 
Disagree 

The feature does not function 
properly or is unacceptable 

2 Disagree The feature performs poorly 
and requires major 
improvement 

3 Neutral The feature is adequate but 
may require further evaluation 

4 Agree The feature works well and is 
considered acceptable 

5 Strongly 
Agree 

The feature performs very 
well and is highly suitable for 
use 

The final stage is Implementation, which aims to 
ensure that the system operates fully and is applicable in 
real-world scenarios. During this stage, comprehensive 
integration is conducted among smartwatches, mobile 
applications, and web applications, followed by rigorous 
testing performed by relevant stakeholders, namely the 
child as the primary user, the parent as the health 
overseer, and health personnel as the medical validators. 
Testing is conducted through field trials to ensure that 
system workflows function as intended and that 
performance testing yields satisfactory results. 
Anticipated externalities include user feedback for further 
refinement, as well as development strategies based on 
the outcomes of the implementation evaluation [35], [36]. 

 

III. Results 

B. Smartwatch 

The study conducted a comprehensive investigation of 
various commercially available smartwatches that are 

 
Fig. 3. Rapid Application Development (RAD) 
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readily accessible. A compilation of these commercially 
available smartwatches is presented in TABLE 2. 

 

Table 2. List of Smartwatches 

 SKMEI 
E66 

Aolon 
GT22 

Aolon 
BIP 

VS ET 
482 

VS ET 
570 

Glucose 
Sensor 

× √ √ √ √ 

Blood 
Sensor 

× × × √ √ 

Body 
Sensor 

× × × √ √ 

BLE √ √ √ √ √ 

GATT √ √ √ √ √ 

Security × × × √ √ 

Price  
(K IDR) 

380 390 249 419 439 

The smartwatches selected for this study are the VS 
ET 482 and VS ET 570 due to their comprehensive range 
of sensors, which include not only blood glucose 
measurement sensors but also sensors designed to 
assess blood components and body composition. These 
additional sensors facilitate the acquisition of auxiliary 
data relevant to the monitoring of prediabetic and diabetic 
conditions. The blood sensors integrated into the 
smartwatches generate values corresponding to uric acid 
levels and lipid profiles, including triglycerides (TG), high-
density lipoprotein (HDL), and low-density lipoprotein 
(LDL). Empirical studies have demonstrated that elevated 
uric acid levels are associated with an increased risk of 
prediabetes [41], [42]. Furthermore, additional studies 
have indicated that dysregulation of lipid profiles, 
including TG, HDL, and LDL, contributes to impaired 
glucose metabolism. 

 

Table 3. Smartwatch codes 

Code Description 

f0080001-0451-

4000-b000-

000000000000 

UUID utilized as an identification 
mechanism to facillitate access 
to smartwatch devices 

0x89 Header code corresponding to 
real-time glucose data 

0xDF Header code associated with 
historical glucose level data.  

[0x89, 0x01, 

0x01, 0x00] 
Byte payload constituting a 
command code intended to 
initiate blood glucose monitoring 

This study evaluated the Bluetooth Low Energy (BLE) 
and Generic Attribute Profile (GATT) functionalities of 
each smartwatch using nRF Connect and Wireshark to 
identify services, characteristics, UUIDs, properties (read, 
write, notify), and descriptors, such as the Client 

Characteristic Configuration Descriptor (CCCD), relevant 
to the smartwatches under analysis. This procedure is 
essential to ensure that access to the selected 
smartwatches enables command execution and retrieval 
of data from the blood glucose sensor. Table 3 presents 
the findings of this examination regarding the codes 
required to access and control the VS ET 482 and VS ET 
570 smartwatches utilized in this study. 

Subsequently, the UUID code is used to establish a 
connection with the smartwatch via the notify() and write() 
functions. To initiate blood glucose level calculation, the 
write() function is used to transmit a payload byte to the 
smartwatch. Following this step, data transmitted by the 
smartwatch are monitored using the notify() function. The 
received data are then filtered based on the header codes 
0x89 or 0xDF. The dataset, consisting of 8 bytes, follows 

the format outlined in Table 4. 

 

Table 4. Format of data 

# Byte Description 

0 Header (0x89 atau 0xDF) 

1 Unknown flag 

2 Unknown flag 

3 Status indicator, where a value of 0 or 1 
signifies a successful outcome. A status 
value of 2 denotes a low-power condition, a 
value of 3 indicates that the system is in a 
busy state, and a value of 4 reflects the 
presence of a wear-related error. 

4 Progress 

5-6 Raw data 

7 Optional bytes 

The concluding stage involves extracting raw blood 
glucose measurement data from byte 5 or 6 and 
converting these values into standard units of mmol/L and 
mg/dL, which are commonly used for blood glucose 
reporting. Furthermore, the code and procedural workflow 
governing smartwatch connection and blood glucose 
measurement are transcribed into algorithms and 
implemented using the Dart/Flutter programming 
language to support the development of Android-based 
mobile applications. 

C. Knowledge Base 

The most significant outcome of the Expert System 
Development stage is the Knowledge Base. The 
Knowledge Base is compiled through discussions with 
experts, specifically healthcare professionals with 
extensive expertise in prediabetes and diabetes, as well 
as expert conclusions derived from studies published in 
scholarly journals. The established rules are based on 
fasting blood glucose measurements (Fasting Plasma 
Glucose, FPG) and glucose measurements obtained two 
hours after meals (2-Hour Postprandial Glucose, PP2). 
The knowledge base used to determine prediabetes 
status based on blood glucose values consists of two 
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decision-making stages. In the first stage, the system 
receives fasting blood glucose (FPG) input values. If the 
value falls within the range of 100–125 mg/dL, it is 
classified as prediabetes. If the value is less than 100 
mg/dL, the evaluation proceeds to the two-hour 
postprandial glucose (PP2) value. If the value exceeds 
125 mg/dL, the result is considered inconclusive, as it 
indicates a potential for diabetes and requires further 
examination. In the second stage, which evaluates the 
PP2 value, a range of 140–199 mg/dL is classified as 
prediabetes. Values below 140 mg/dL are classified as 
normal, whereas values equal to or exceeding 200 mg/dL 
are considered inconclusive and suggest the possibility of 
diabetes, thereby requiring additional examination. 

Subsequently, these rules are translated using the 
Rule-Based Reasoning (RBR) method, as described in 

Algorithm 1. 

Algorithm 1: Prediabetes Status Determination 

Input : FPG (Fasting Plasma Glucose), PP2 (2-Hour 
Postprandial Glucose) 

Output: status ∈ {Normal, Prediabetes, Diabetes} 

1.  Read FPG and PP2 

2.  // Check Prediabetes based on FPG 

3.  if (FPG ≥ 100) and (FPG ≤ 125) then 

4.      status ← Prediabetes 

5.      return status 

6.  end if 

7. 

8.  // Check Prediabetes based on PP2 

9.  if (PP2 ≥ 140) and (PP2 ≤ 199) then 

10.     status ← Prediabetes 

11.     return status 

12. end if 

13. 

14. // Check Normal: all results below prediabetes 
thresholds 

15. if (FPG < 100) and (PP2 < 140) then 

16.     status ← Normal 

17.     return status 

18. end if 

19. 

20. // Check Diabetes: all results above prediabetes 
thresholds 

21. if (FPG > 125) and (PP2 > 199) then 

22.     status ← Diabetes 

23.     return status 

24. end if 

25. 

26. // Default case (e.g., inconsistent or missing data) 

27. status ← Undefined 

28. return status 

This algorithm is subsequently implemented in mobile and 
web applications to process data derived from the Fact 
Base and Inference Engine components. 

D. Requirement 

The definition of requirements constitutes a critical stage 

in the software development lifecycle, particularly when 
employing the Rapid Application Development (RAD) 
methodology. The outcome of this stage is a use case 
diagram that delineates an overview of interactions 
between actors and the functional capabilities available to 
each actor. Within this system, four distinct actors are 
identified: the administrator, the adolescent user, the 
parent, and the doctor. The analysis of the requirements 
yields two distinct categories of applications, each 
encapsulating the primary functional features. These 
categories are represented by the mobile application 
group as illustrated in Fig. 4 and the web application group 
as illustrated in Fig. 5. 

 
Fig. 4. Use case diagram for mobile application. 

 
Fig. 5. Use case diagram for web application. 

 

A selection of significant use cases is presented in 
Table 5. Furthermore, detailed examination of the web 
application use cases reveals that they share identical 
feature descriptions with the glucose data history use 
cases presented in the mobile application.  
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Table 5. Use case description 

Actor Adolescent 

Use Case Glucose measurement 

Description This functionality allows the initiation of 
blood glucose measurements through 
the smartwatch during fasting period and 
following breakfast consumption. After 
the blood glucose value is acquired by 
the smartphone, the resulting data are 
stored in the local storage system. 

 

Actor Adolescent 

Use Case Input glucose data 

Description This functionality enables users to 
manually input blood glucose 
measurement data. These 
measurement results may originate from 
devices other than smartwatches or from 
laboratory examinations. Users are able 
to enter blood glucose data during 
fasting periods or after breakfast 
consumption. 

 

Actor Adolescent 

Use Case View glucose data history 

Description This functionality facilitates the review of 
historical blood glucose measurement 
data and provides corresponding health 
status information categorized as 
normal, prediabetes, or diabetes.  

 

Actor Parent, Doctor 

Use Case View dashboard 

Description This functionality presents a 
consolidated overview of the blood 
glucose history and health status of 
adolescents under observation. When 
the observer is a parent, access is 
limited to a summary of their child’s data. 
Healthcare professionals are able to 
review summaries for multiple patients.  

The consultation use case within the web application 
serves as a communication conduit between parent and 
doctor actors. Use cases executed by the administrator 
actor are characterized by the capability to perform 
Create, Retrieve, Update, and Delete (CRUD) operations 
on user data, role assignments, and menu configurations. 

E. Design 

The outcome at this stage pertains to the architectural 
framework of the database employed in both mobile and 

 
Fig. 7. Mobile application (A) user login, (B) manual and automatic input data, (C) predicted glucose status, 
(D) tabular blood glucose data history, (E) chart of blood glucose data history. 
 

 
Fig. 8. Web application (A) dashboard of patients’ blood glucose status, (B) a patient’s blood glucose 
history 
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web applicationsFor mobile application data storage, a 
local NoSQL database specifically designed for Flutter 
and Dart, namely Hive, is utilized. The data architecture 
within Hive is characterized by a structure consisting of 
keys and corresponding values. The key attribute 
functions as the identifier of the attribute, while the value 
represents the associated data. Table 6 delineates the 
data architectures employed within the mobile 
applications. 

 

Table 6. Data structure in the mobile application 

Key  Description 

date Date corresponding to blood 
glucose measurement 

blood_glucose Quantitative results of blood 
glucose levels 

context Includes a classification of blood 
glucose measurements that 
includes one of the following 
descriptors: before_breakfast, 
after_breakfast, or random.  

Conversely, the database architecture in the mobile 
application is designed for implementation using MariaDB 
database. The outcomes of this design yielded the 
creation of 13 tables. This structure comprises three 
transaction tables dedicated to storing blood glucose 
measurement results obtained from patients. The 
remaining tables function as application support tables, 
including those related to menus, roles, users, and 
security. The design of the three transaction tables 
intended for archiving blood glucose measurement results 
is illustrated in Fig. 6. 

 

Fig. 6. Data structure in the web application. 

The users table is used to store user information 
relevant to blood glucose monitoring. The user_settings 
table is designated for storing data related to the initiation 
of fasting and the timing of breakfast. The 
blood_glucose_reading table is utilized to archive blood 
glucose data derived from measurement results. At this 
stage, the design of interfaces for both mobile and web 
applications is also conducted. The resulting designs are 
subsequently implemented, as described in the following 
section, Development. 

F. Development 

At this stage, the development of mobile and web 
applications is carried out in accordance with the 
predetermined features and design elements established 
during the preceding stage. Mobile applications are 
developed using the Dart programming language in 
conjunction with the Flutter framework. The resulting 
interface is shown in Fig. 7. Fig. 7 illustrates the graphical 
user interface of the mobile application. The application 
login is shown in Fig. 7 part A. The execution of the 
Glucose measurement and Input glucose data 
functionalities is depicted in Fig. 7 part B. Fig. 7 part C 
displays the predicted blood glucose status generated by 
the expert system, indicating whether the user is 
categorized as normal, prediabetes, or diabetes; this 
functionality serves as a practical implementation of the 
Knowledge Base, Fact Base, and Inference Engine 
components inherent to the expert system–based artificial 
intelligence. Historical blood glucose data are presented 
in tabular format in Fig. 7 part D, while Fig. 7 part E 
presents a visualization of historical glucose data, which 
illustrates trends over time and supports users in 
comprehensively interpreting blood glucose status. 

Fig. 8 presents the outcomes of the web application 
development process. In Fig. 8, Part A illustrates the 
implementation of the View dashboard feature, while Fig. 
8  part B illustrates the Detail View feature. The detail view 
feature similarly incorporates the Knowledge Base, Fact 
Base, and Inference Engine components associated with 
the expert system. In addition, this section includes a 
consultation feature that facilitates communication 
between parents and healthcare professionals for child 

health consultations. The interconnectivity among 

smartwatches, mobile applications, and web applications 
is further elucidated in Fig. 7 and Fig. 8. Fig. 7 delineates 
the integration flow from left to right, beginning with 
communication between the mobile application and the 
smartwatch, employing the code information from Table 3  
and the flutter_blue_plus package to streamline the 
communication process. Following the successful storage 
of blood glucose measurement data from the smartwatch 
within the mobile application, subsequent communication 
between the mobile application and the server is 
established to enable data storage in the server 
database. This communication is enabled by a backend 
web application implemented as an Application 
Programming Interface (API). Meanwhile, Fig. 8 
demonstrates that the frontend web applications shown in 
Parts A and B can retrieve data from the server database 
through the use of a RESTful API.  

The developed RESTful APIs consist of several 
groups, including (1) Auth for authentication purposes, (2) 
BloodGlucose for the retrieval and storage of blood 
glucose data by mobile and web applications, (3) 
Dashboard for extracting data to be displayed on 
dashboard pages, (4) Profile for presenting and updating 
user profile information, and (5) Settings for modifying and 
updating blood glucose measurement time 
parameters. Table 7  lists the key RESTful API functions 
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that have been implemented to support communication 
between mobile and web applications. 

 

Table 7. Function list of RESTful API 

Name  Method Path 

Auth POST api /login 

BloodGlucose GET api/blood-glucose 

 POST api/blood-glucose 

 GET api/blood-glucose/list 

 GET api/blood-glucose/history 

Dashboard GET api/dashboard 

Profile GET api/me 

 PATCH api/me 

Setting GET api/me/settings 

 PATCH api/me/settings 

 

G. Testing 

The examinations conducted in this study were carried out 
on a limited scale and have not yet involved large or 
heterogeneous user groups. Functional testing of the 
mobile and web applications was conducted using a 
black-box testing methodology to assess each feature 
and interaction flow. A total of eight individuals 
participated in this stage, consisting of two members of 
the software development team and six members of the 
study team, who assumed the roles of adolescents, 
parents, and physicians. In addition to functional 
verification, these participants also evaluated system 
usability using a five-point Likert scale. Table 8 presents 
the usability evaluation of the system using a five-point 
Likert scale, measuring user perceptions of functionality, 
clarity, and operational reliability across both the mobile 
and web applications. All functional features received high 
mean scores ranging from 4.4 to 4.8, indicating that users 
“Agree” or “Strongly Agree” that the system operates 
effectively and is suitable for use. The overall mean score 
of 4.6 indicates that the system is highly acceptable and 
suitable for user adoption. These results suggest that the 
system is considered highly acceptable and user-ready 
within the scope of this limited internal assessment. 
However, although the consistently high Likert scores 
demonstrate encouraging initial usability and system 
stability, broader testing involving actual end users and 
more diverse demographic groups is required to validate 
generalizability and ensure robust performance in real-
world conditions. 

 

Table 8. User Acceptance Testing (UAT) result using 
usability  

No Functional Feature Mean 
Likert 
Score 

Mobile Application 

1 Connect to smartwatch 4.7 

2 Disconnect from smartwatch 4.6 

3 Glucose measurement 4.5 

4 Input glucose data 4.8 

5 View glucose status 4.7 

6 View glucose data history – table 4.6 

7 View glucose data history – chart 4.7 

Web Application 

1 Login 4.8 

2 Logout 4.8 

3 View profile 4.6 

4 Update profile 4.5 

5 View dashboard 4.7 

6 View detail – glucose status 4.6 

7 View detail – data history 4.6 

8 Consultation 4.4 

9 User management – CRUD 4.5 

10 Role management – CRUD 4.5 

11 Menu management – CRUD 4.6 

Overall mean score 4.6 

A separate evaluation of the rule-based expert system 
was conducted to assess its classification performance. 
This testing was performed by two members of the 
development team using 150 manually prepared test 
records containing variations of FPG and PP2 values. The 
test results are presented in Table 9. 

 

Table 9. Test result of rule-based expert system 

Class # 
record 

Correctly 
Classified 

Misclassified 

Normal 50 50 0 

Prediabetes 50 50 0 

Diabetes 50 50 0 

Total 150 150 0 

Under these controlled conditions, the expert system 
achieved a 100% accuracy rate. However, this result 
reflects performance within a constrained testing 
environment, and further validation using real clinical data 
and larger sample sizes is required to ensure 
generalizability and reduce potential bias. 

 

IV. Discussion  

A. Smartwatch Exploration 

Based on the findings of this study, the sensors 
embedded in each smartwatch can be identified through 
official product documentation, enabling the compilation 
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of a catalog of devices and their respective features, as 
shown in  Table 2. A comprehensive analysis using nRF 
Connect and Wireshark software demonstrated 
effectiveness in identifying service UUIDs, characteristic 
UUIDs, and command codes required to establish 
connections and retrieve data via BLE and GATT 
protocols. However, these applications do not provide 
direct information regarding sensor nomenclature or the 
specific functionality associated with each service. 
Consequently, manual inspection of each service was 
required to determine which service transmitted glucose 
measurement data. In addition, the retrieved codes are 
applicable only to specific smartwatch models, namely the 
VS ET 482 and VS ET 570, and are not compatible with 
other smartwatches such as the Aolon GT22, Aolon BIP, 
or other devices currently available on the market. 

The evaluation results indicate that commercially 
available smartwatches are equipped with multiple health 
sensors integrated into a single compact device. This 
development enables the use of smartwatches as a core 
component of telemedicine systems in a more efficient 
and rapid manner compared with earlier study 
approaches, such as those described in studies [13], [14], 
and [12], which required the design and assembly of 
custom wearable devices. However, this study did not 
validate smartwatch-derived glucose measurements 
against clinical gold-standard instruments, such as 
laboratory-based glucose analyzers or certified 
glucometers. As a result, although the smartwatch data 
were sufficient for testing the expert system workflow, the 
accuracy and clinical reliability of the glucose 
measurements could not be confirmed. Future work 
should include formal validation studies comparing 
smartwatch-derived glucose values with medically 
validated devices to ensure reliable data inputs for 
decision-making in real-world healthcare settings. 

B. Expert System Development 

The empirical findings indicate that the rule-based expert 
system performs efficiently under the controlled 
conditions of this study. The system achieved a 100% 
accuracy rate when tested using 150 manually prepared 
records consisting of balanced variations of FPG and PP2 
values (50 normal, 50 prediabetes, and 50 diabetes). This 
high accuracy is attributable to the limited test set, the 
deterministic nature of the IF–THEN rules, and the 
constrained variability of the input data. With a small 
number of rule conditions and clearly defined glucose 
thresholds, the expert system can accurately classify test 
cases with minimal ambiguity. One notable advantage of 
the expert system approach, compared with machine 
learning and deep learning models, lies in its low 
computational requirements. Because inference is based 
on direct rule evaluation rather than iterative model 
training or large-scale matrix operations, the system 
operates with minimal processing power, memory usage, 
and energy consumption. This efficiency enables 
deployment on both mobile devices and web platforms 

without reliance on high-performance servers, making the 
approach particularly suitable for low-resource settings. 

However, several limitations must be acknowledged. 
First, the evaluation was conducted by only two members 
of the development team and used a relatively small 
dataset of 150 records, all generated in a controlled 
environment. This limited diversity reduces the likelihood 
of encountering ambiguous or borderline cases that 
commonly occur in real-world medical data. As a result, 
the reported accuracy does not yet reflect system 
performance under broader clinical or population-level 
variability. Second, unlike machine learning and deep 
learning models, which can learn complex patterns, adapt 
to new data distributions, and handle high-dimensional 
signals, rule-based systems lack flexibility and do not 
generalize beyond the predefined rule structure. Such 
systems may fail to accommodate atypical glucose 
patterns or mixed clinical conditions unless additional 
rules are manually incorporated by domain experts, 
thereby limiting scalability and adaptability. 

Despite these limitations, the expert system developed 
in this study offers a practical and economical solution for 
early prediabetes monitoring, particularly in settings with 
limited computational resources and unstable network 
infrastructure. The telemedicine system can operate 
autonomously on smartwatches and mobile applications 
without requiring an internet connection, as glucose 
classification is performed locally through rule-based 
analysis. This offline capability enhances versatility 
compared with machine learning and deep learning 
approaches, which generally require substantial 
computational resources and server-based processing, 
making them less feasible for low-resource environments 
[15]. To strengthen clinical applicability and 
generalizability, future work should incorporate broader 
testing using real clinical datasets, larger and more 
diverse participant groups, and evaluations across 
varying demographic and environmental conditions. 

C. Software Development 

The Rapid Application Development (RAD) methodology 
enables the generation of continuous outputs at every 
stage of development, culminating in the establishment of 
a comprehensive and fully operational telemedicine 
system. This methodology prioritizes rapid iterations and 
direct collaboration between developers and users, 
thereby minimizing the time allocated to documentation. 
Feature enumeration is concisely represented in the form 
of a use case diagram, accompanied by corresponding 
use case descriptions. A detailed examination of the 
functional flow is conducted through interactive dialogue 
between the developer and the user. This approach 
accelerates the development process without 
compromising design integrity, as feedback can be 
promptly incorporated into subsequent iterations, thereby 
eliminating the need for an extended documentation cycle 
[35]. 

During the development stage, this study implements 
advanced technology to enhance the functionality of 
artificial intelligence–driven telemedicine systems. Mobile 
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applications are developed using the Dart programming 
language in conjunction with the Flutter framework. In 
contrast, web applications are developed using the 
Laravel Inertia Vue framework, which integrates frontend 
and backend components in a modern and efficient 
manner. The application of these technologies results in a 
system that is robust, responsive, and suitable for cross-
platform deployment. The system architecture illustrated 
in Fig. 7  and Fig. 8  demonstrates the system’s capability 
to operate in both offline and online environments. In 
offline mode, users can measure blood glucose levels 
using smartwatches and mobile applications without 
requiring an internet connection. This capability is 
particularly important for areas with limited network 
access. Parents can continue to monitor their child’s 
health status directly through the application, and data 
can be collected for subsequent consultation with local 
healthcare professionals. In online mode, the system 
automatically transmits data to the server, enabling 
physicians and parents to monitor patient health status 
remotely. 

With this adaptable architectural framework, the 
deployment of expert system–oriented artificial 
intelligence using the Rule-Based Reasoning (RBR) 
methodology can be implemented on both mobile devices 
and server platforms, as this approach is resource-
efficient and does not require substantial computational 
power. This contrasts with the study cited in  [13], which 
employs machine learning–based artificial intelligence 
and deep learning techniques, where inference 
operations must be performed exclusively on server 
infrastructure due to high computational demands. The 
empirical findings indicate that all components of the pass 
test system, together with the integrated expert system, 
achieved a 100% accuracy rate in identifying prediabetes 
status. The integration of telemedicine and artificial 
intelligence through this methodology results in a system 
not only functional but also cost-effective and readily 
scalable. Given its ability to operate independently of 
internet connectivity and its high resource efficiency, this 
system demonstrates strong potential as an effective 
intervention to adress the increasing prevalence of 
prediabetes and diabetes in Indonesia, particularly in 
regions with limited healthcare resources and inadequate 
digital infrastructure. 

Based on the findings derived from this study, several 
constraints must be acknowledged for future 
development. The Bluetooth Low Energy–Generic 
Attribute Profile (BLE–GATT) connection and the 
associated communication protocols identified during the 
smartwatch exploration stage are applicable only to 
specific categories of devices and therefore cannot be 
directly implemented on other commercial smartwatches. 
This limitation restricts system interoperability and 
necessitates application reconfiguration when deployed 
with different smartwatch models. From a testing 
perspective, the current study remains limited to internal 
evaluation involving a small number of participants and 
controlled scenarios. It does not include extensive field 
testing across diverse device configurations and varying 

network conditions. In addition, the evaluation does not 
encompass white-box testing, which is intended to assess 
the internal logic of the system, nor does it include stress 
testing designed to evaluate system robustness under 
conditions of high utilization. Furthermore, the knowledge 
base of the expert system developed in this study is based 
exclusively on two primary parameters, namely Fasting 
Plasma Glucose (FPG) and Postprandial Glucose (PP2). 
This limitation indicates that the inferential rule model 
remains relatively simple and does not incorporate 
additional health variables that may significantly influence 
blood glucose levels, such as lipid profiles, uric acid 
levels, body mass index, or physical activity factors. 
Consequently, the diagnostic scope is confined to basic 
blood glucose indicators. 

 

V. Conclusion 

This study aimed to develop an AI-driven telemedicine 
system for determining prediabetes status using a rule-
based expert system integrated with commercially 
available smartwatches as non-invasive glucose sensors. 
The study successfully achieved this objective through 
three major technical contributions. First, smartwatch data 
acquisition was implemented via Bluetooth Low Energy 
(BLE) communication using the GATT architecture, 
enabling real-time retrieval of glucose measurements. 
Second, a Rule-Based Reasoning (RBR) expert system 
was constructed using IF–THEN rules derived from 
Fasting Plasma Glucose (FPG) and Postprandial Glucose 
(PP2) thresholds, achieving 100% accuracy when tested 
on 150 test records (50 normal, 50 prediabetes, and 50 
diabetes). Third, a comprehensive telemedicine 
framework utilizing mobile and web applications was 
implemented with essential functional features, including 
automatic and manual glucose input, visualization of 
historical data, and multi-role monitoring. Usability testing 
using a five-point Likert scale yielded high mean scores 
ranging from 4.4 to 4.8, with an overall mean of 4.6, 
indicating that users “Agree” or “Strongly Agree” that the 
system is highly acceptable and suitable for adoption. 
While these findings demonstrate the feasibility and 
practicality of an expert system–based telemedicine 
solution for early prediabetes detection, several 
limitations must be acknowledged. The BLE–GATT 
implementation is currently compatible only with specific 
smartwatch models, and the expert system relies 
exclusively on two clinical parameters (FPG and PP2), 
which limits its diagnostic depth. Moreover, system testing 
was conducted using a small internal group and simulated 
data, without validation against clinical-grade reference 
standards. 

Future work will focus on developing a more universal 
BLE–GATT communication module to support a broader 
range of wearable devices, expanding the expert system 
knowledge base to include additional physiological 
parameters, and conducting large-scale usability and 
clinical validation studies involving adolescents, parents, 
and healthcare professionals. These enhancements are 
expected to improve accuracy, interoperability, and real-
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world adaptability, thereby supporting wider adoption of 
the system as an accessible and cost-effective digital 
healthcare solution for prediabetes prevention. 
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