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Abstract

Steady state visual evoked potential (SSVEP) brain-computer interfaces (BCI)
constitute a promising, non-invasive, hands-free paradigm for directly
controlling external devices through neural activity. Despite their strong
potential, practical deployment remains limited by dependence on expensive,
laboratory-grade electroencephalography (EEG) systems, which reduce
accessibility, portability, and scalability. To address this limitation, this study
designs and evaluates a real-time capable six-command SSVEP-BCI for
simulated drone navigation using a low-cost, consumer-grade EEG headset.
The proposed system is explicitly oriented toward real-world usability, with
emphasis on computational efficiency, robustness, and affordability. An
adaptive signal processing pipeline was developed to ensure reliable SSVEP
detection under practical conditions. The pipeline combines spectral feature
extraction, capturing frequency-domain responses elicited by periodic visual
stimuli, with spatial feature analysis to exploit inter-channel information and
enhance class discrimination. The resulting feature set was evaluated using
three supervised machine-learning classifiers, Support Vector Machine
(SVM), Random Forest (RF), and Artificial Neural Network (ANN), allowing a
systematic comparison in terms of accuracy and processing latency.
Experiments were conducted on EEG data collected from 30 participants. The
results demonstrate that RF strikes the best balance between classification
performance and real-time feasibility, achieving an accuracy of 87.24% with a
low computational latency of 0.09s and a high information transfer rate (ITR)
of 35.0 bits/min. In comparison, ANN failed to reach sufficient accuracy for
reliable multi-command operation, while SVM yielded only marginal
performance. Overall, these findings confirm the feasibility of low-cost, multi-
command SSVEP-BCI and underscore their potential for assistive
technologies, teleoperation, and human-computer interaction applications
that require responsive, economical solutions.

I. Introduction frequencies,
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primarily detected over the occipital

Steady state visual evoked potential (SSVEP) based
brain-computer interfaces (BCI) are renowned for their
high signal-to-noise ratio, minimal user training, and
high information transfer rates (ITR) [1][2]. These
attributes make them ideal for real-time control
applications, such as navigating drones or robotic arms
[3][4]. While laboratory-grade electroencephalography
(EEG) systems deliver robust performance, their
prohibitive cost restricts widespread accessibility.
SSVEPs are rhythmic brain responses elicited when
individuals focus on visual stimuli flickering at specific

cortex. Their frequency-locked nature makes them
highly suitable for BCI applications, offering robustness
against noise and fast detection with minimal
calibration. However, the application of SSVEP to
drone navigation poses challenges, including
overlapping harmonic responses, user fatigue from
prolonged visual focus, and difficulty maintaining
command separability under real-world constraints.
The advent of affordable, consumer-grade EEG
headsets (e.g., EMOTIV) presents a viable alternative
for practical BCl deployment [5]. However, these
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devices often exhibit lower signal quality and timing
imprecision, which complicates the reliable recognition
of multiple commands [6]. Various signal processing
techniques have been employed to address these
challenges, including canonical correlation analysis
(CCA) and filter bank extensions (FBCCA) [7][8],
alongside classifiers like Support Vector Machines
(SVM), Random Forests (RF), and Artificial Neural
Networks (ANN) [8][9]. Recent investigations have also
explored deep learning and transformer architectures
for enhanced performance [10][11].

However, deep learning and transformer-based
models typically require large labelled datasets,
intensive training resources, and longer inference
times. These requirements make them less suitable for
real-time BCI systems, especially when deployed on
consumer-grade EEG devices with limited signal
quality and processing capabilities. In contrast,
classical machine learning models such as SVM, RF,
and ANN offer faster training, lower computational
overhead, and better generalizability on small sample
data characteristics that align well with the constraints
of affordable, real-time multi-command BCI systems.
Although prior research has demonstrated BCI
controlled drones [12][13], these studies underscore
that high accuracy alone is insufficient; system latency
must remain under two seconds for feasible real-time
operation. A direct comparison of classical machine
learning classifiers for this specific application using
consumer-grade hardware is presently lacking. To
bridge this gap, this study introduces a real-time, six-
command SSVEP-BCI framework for drone navigation
using a standard consumer-grade EEG headset. A
dynamic processing pipeline is implemented, and three
classifiers, SVM, RF, and ANN, are evaluated, with a
focus on the critical trade-off between classification
accuracy and latency. Our results, derived from 30
participants, demonstrate that the RF classifier
achieves an optimal balance, with 87.24% accuracy, a
latency of 0.09s, and an ITR of 35.0 bits/min. These
findings highlight the viability of low-cost, multi-
command SSVEP-BCI for practical assistive and
robotic applications.

Despite growing interest in SSVEP-BCI systems,
prior studies have rarely compared classical machine
learning classifiers (e.g., RF, SVM, and ANN)
specifically for multi-command control with consumer-
grade EEG headsets. While some works explore
classification in low-cost settings, they often rely on
limited command sets, offline paradigms, or emphasize
deep learning models without benchmarking classical
approaches. For instance, [14] highlights the use of
consumer-grade EEGs in cognitive studies, with a
limited focus on real-time control tasks. Meanwhile, [15]
review multiple EEG-based BCI applications but
observe limited comparisons across classifiers like

SVM, ANN, and RF in practical multi-command

contexts. This study addresses this gap by performing

a systematic, real-time evaluation of multiple classical

classifiers for drone navigation using affordable EEG

equipment.

This study is motivated by several critical
challenges in developing real-time BCI systems using
affordable hardware: (1) maintaining high classification
accuracy despite the lower signal-to-noise ratio of
consumer-grade EEG devices, (2) minimizing system
latency to enable smooth multi-command navigation,
and (3) ensuring clear separability between SSVEP
stimulus frequencies to avoid command ambiguity. To
this end, this study aims to evaluate classical classifiers
for real-time drone control using SSVEP signals
acquired from a consumer-grade EEG system.The
primary research questions are:

RQ1: Which classifier offers the best balance between

accuracy and latency for multi-command SSVEP

classification in a consumer-grade EEG setup?

RQ2: Can real-time control of a drone be achieved

reliably using SSVEP signals detected through a low-

cost EEG device under practical constraints?

This study addresses key practical challenges in
deploying SSVEP-based brain-computer interfaces
using consumer-grade EEG hardware for real-time,
multi-command control. The main contributions are
summarised as follows:

1. A real-time six-command SSVEP-BCI system is
designed and evaluated for drone navigation using
a consumer-grade EEG headset, demonstrating
stable multi-command control under low-cost
hardware constraints.

2. An adaptive signal processing pipeline is proposed
that integrates spectral and spatial feature
representations to improve class separability,
explicitly addressing the reduced signal-to-noise
ratio and timing imprecision inherent to consumer-
grade EEG devices.

3. A systematic real-time comparison of classical
machine learning classifiers (SVM, RF, and ANN) is
conducted under identical experimental conditions,
with explicit analysis of the accuracy latency trade-
off critical for practical BCI operation.

Il. Methods

A. Participants

Thirty healthy adults (N=30; mean age=22.4+2.1 years;
range=19-26) participated. All had normal or corrected
to normal vision, no neurological or psychiatric history,
and were right-handed, as assessed by the Edinburgh
Handedness Inventory [16]. Written informed consent
was obtained in accordance with institutional ethics
approval and the Declaration of Helsinki. Before the
experimental session, all participants completed a brief
screening interview to confirm eligibility and to ensure
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that they were comfortable with flickering visual stimuli.
They were then given a 5-minute familiarisation
session in which the EMOTIV EPOC+ headset was
fitted and calibrated while they practised focusing on
each of the six SSVEP targets under supervision.
During this training, participants were instructed to
maintain fixation on the cued flickering region and to
avoid blinking or unnecessary movements to minimise
artefacts. This familiarisation procedure was
implemented to enhance participant comfort, reduce
anxiety, shorten adaptation time, and improve signal
stability during formal data collection.
B. EEG Acquisition
EEG data were acquired using a wireless 14-channel
EMOTIV EPOC+ headset in accordance with the
international 10-20 system. The integrated Common
Mode Sense (CMS) and Driven Right Leg (DRL)
reference system enhanced common-mode noise
rejection. [17]. Signals were sampled at 128 Hz with 16-
bit resolution, adequate for SSVEP detection. [6]. The
fixed electrode layout covers the following positions:
AF3,F7,F3, FC5, T7, P7,01, 02, P8, T8, FC6, F4, F8,
and AF4, providing sufficient spatial coverage for both
occipital signal acquisition and artefact monitoring
[14][18]. For SSVEP acquisition, primary focus was
placed on occipital (O1, O2) and adjacent parietal (P7,
P8) electrodes, which overlie visual cortical areas and
are widely recognised as optimal sites for Steady state
visual evoked potential detection. Although all 14
channels were recorded, only these occipito-parietal
electrodes were retained for subsequent analysis due
to their high SSVEP sensitivity. The full channel
configuration also enables detection of signal artefacts
and supports integration with a hybrid BCI [14][15].
The selection of EMOTIV EPOCH+ is motivated by its
affordability and portability. However, it presents
several limitations: (1) increased susceptibility to
motion artefacts and environmental noise; (2) lower
signal-to-noise ratio than clinical-grade EEG; and (3)
potential latency from Bluetooth-based transmission.
These constraints have been reported in prior
validation studies using the EPOC+ headset in similar
real-time SSVEP-BCI systems [14][15]. Sessions were
conducted in an electromagnetically shielded room with
noise-controlled lighting, with stimulus event markers
synchronised via the Lab Streaming Layer (LSL)
protocol to ensure precise temporal alignment between
stimuli and EEG signals. The EMOTIV EPOC+ headset
was mounted according to manufacturer guidelines,
with continuous monitoring of signal quality across all
14 channels; occipital (O1, O2) and parietal (P7, P8)
electrodes served as the primary SSVEP recording
sites, while the remaining channels supported noise
tracking, reference stability, and potential hybrid
feature integration.
C. Visual Stimuli and Command Mapping

Six frequencies were displayed on a monitor using
sinusoidal modulation: 9.0 Hz (left), 10.5 Hz (right),
1125 Hz (land), 12.0 Hz (forward), 13.5 Hz
(backwards), and 14.25 Hz (takeoff), as presented in
Table 1. Stimuli were confined to 8-15 Hz to elicit robust
SSVEP responses while ensuring participant comfort
and minimising  harmonic interference  [16].
Frequencies were non-harmonic to enhance
separability. [19].

Table 1. Mapping of stimulus frequencies to drone
commands.

Frequency

Command (Hz) Display Pattern

Forward 12.00 White/black blink
Backward 13.50 White/black blink
Left 9.00 White/black blink
Right 10.50 White/black blink
Takeoff 14.25 White/black blink
Land 11.25 White/black blink

Feature vectors (FFT peaks, CCA) were used for
classification. Stimuli validation involved 10second
preliminary recordings; inconsistent stimuli were
discarded [16]. Supercycle patterns mitigate display
refresh-rate constraints at non-integer frequencies.
The session included six blocks (one per frequency).
Each trial included 5s stimulation and 1-3 seconds of
rest. Frequencies were presented 60 times in random
order. A 5-minute acclimatisation period and 1-2-
minute rest intervals were included.

D. Experimental Design

Each experimental session was conducted in a quiet,
lighting-controlled indoor environment. Participants
were seated approximately 60 cm from a 15-inch
monitor, with consistent table and chair positioning
maintained throughout all trials to ensure stable visual
angles. Lighting was kept moderate to prevent glare
and enhance the visibility of stimuli. Each session
consisted of multiple runs, and each run included
randomised command trials to prevent learning bias. In
each trial, (1) a textual cue appeared on screen (e.g.,
“Look at TAKEOFF”). (2) the stimulus flickered for 5
seconds at its assigned frequency. (3) a rest interval of
1-3 seconds followed each trial to reduce fatigue and
allow EEG baseline recovery. To minimise command
overlap or visual confusion, flickering regions were
positioned with sufficient angular separation. Critically,
commands with similar frequency values were not
placed adjacent on screen. This spatial design helped
reduce classification ambiguity due to perceptual
interference. If participants reported signs of visual
fatigue or loss of concentration, a brief pause (<2
minutes) was introduced before continuing the session.
Stimulus validation was performed through 10-second
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pilot recordings for each frequency during the setup
phase. Any stimuli that failed to elicit consistent SSVEP
peaks were replaced or adjusted [20]. A supercycle-
based flicker pattern was used to ensure accurate
generation of non-integer frequencies on a 60 Hz
monitor. Event timing was synchronised using the LSL
protocol, enabling millisecond-level precision for
stimulus-event alignment.
E. Signal Pre-processing
A standardised preprocessing pipeline was applied
[20]. The data were filtered using a 6-45 Hz band-pass
filter, a 50 Hz notch filter, and automated artefact
rejection (epochs with amplitudes exceeding £200 pV
were excluded). Data were segmented into 1second
epochs with 50% overlap for analysis. To ensure signal
clarity, we excluded epochs with amplitude excursions
exceeding +200 uV, a conservative threshold used to
eliminate contamination from eye blinks, jaw clenching,
and other physiological noise. Missing or irregular
samples, comprising less than 2% of the dataset, were
handled using linear interpolation and
forward/backward filling strategies. While all 14
channels from the EMOTIV EPOC+ headset were
recorded, only the occipital (O1, O2) and parietal (P7,
P8) channels were selected for analysis, as supported
by prior literature [20]. The cleaned EEG signals were
then segmented into 1second epochs, each with 50%
overlap to increase temporal resolution and improve
classifier robustness. To synchronise EEG data with
the corresponding visual stimuli, we used LSL
timestamps, ensuring precise time-locking between
stimulus onset and EEG acquisition. This combination
of filtering, artefact rejection, and epoch segmentation
followed a structure inspired by the PREP pipeline,
which emphasises reproducibility and signal integrity in
large-scale EEG analysis [20].
F. Feature Extraction
To capture frequency-specific information and enhance
the robustness of the classification framework,
complementary feature sets were extracted from each
preprocessed 1-second EEG epoch:
CCA: Correlation coefficients were computed between
the multi-channel EEG signals and sinusoidal
reference templates at the fundamental stimulus
frequency and its first three harmonics [21]. The
canonical correlation coefficient p It is defined as
shown in Eq. (1) [7][16]:

cov(Xy,, wa )

Wx,wy\/var(wa). (wa) R

where X represents the multi-channel EEG data, Y is
the sinusoidal reference signal, and w, and w,,.
Spectral Features based on FFT: Amplitude spectra
were derived around each target frequency (+0.5 Hz)

p = max

and its harmonics. The extracted features included
narrowband log power, signal-to-noise ratio (SNR), and
coherence metrics. [22][23].
G. Classification Models
Three supervised machine learning classifiers were
evaluated: SVM, RF, and an ANN [8][9]. The decision
functions of the evaluated classifiers are summarised
as follows: SVM is employed as a classification method
that separates data points by constructing an optimal
decision boundary in the feature space. For an input
vector x, the SVM decision function is given by Eq. (2)
[24].

y = sign(w' ¢(x) + b) )

where w denotes the weight vector, b is the bias term,
and ¢. represents a feature mapping function. The
class label is determined by the sign of the decision
function, enabling SVM to handle both linear and
nonlinear classification tasks. RF is employed as an
ensemble classification method that combines multiple
decision trees to enhance prediction accuracy and
robustness. For an input sample x, each tree h;(x)
produces an individual class prediction, and the final
output is determined using majority voting, which can
be expressed as Eq. (3) [25].

9 = mode{h, (x)}i= (3)
where K denotes the total number of trees in the
ensemble. This voting mechanism effectively reduces
model variance and enhances classification stability
when dealing with complex feature representations.
ANN is employed to model nonlinear relationships
between input features and output classes. The
activation of the hidden layer is computed as shown in
Eq. (4) [26].

a=oc(Wx+b), 9 =softmax(W,a+ b,) (4)
where W and b represent the weight matrix and bias
vector, respectively, and ¢ denotes the activation
function. The final class prediction is obtained using the
softmax function, which outputs class probabilities and
enables multiclass classification. For the SVM, a radial
basis function (RBF) kernel was employed. The
hyperparameters C and y were optimised through a
grid search combined with 5-fold stratified cross-
validation. The RF classifier is an ensemble of 500
decision trees. The number of features considered for
splitting at each node was set to /P, where P is the
total number of features. The final class label was
determined by majority voting. The ANN is a fully
connected feedforward network that was implemented.
The network comprised an input layer, a hidden layer
with 128 units and RelLU activation, a dropout layer
(rate=0.3), a second hidden layer with 64 units and
ReLU activation, another dropout layer (rate=0.3), and
a final output layer with six units and softmax activation.
The model was compiled with the Adam optimiser
(learning rate = 1073, 8, = 0.9, 8, = 0.999, trained with
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a batch size of 64 using categorical cross-entropy loss,
and employed early stopping with a patience of 15
epochs. The hybrid SSVEP-P300 fusion technique
[12][27] It was not utilised in this study, but it is
recognised as a potential avenue for future research.
H. Evaluation Metrics

The Information Transfer Rate (ITR) is calculated using
[2], measuring the bitrate of the communication system
as shown in Eq. (5)[28].

1—P
ITR = 60/, [log2 N +Plog, P+ (1= P)log, y— (5)

where N is the number of classes (6), Pis the
classification accuracy, and T is the time in seconds
required to issue a single command (including latency
and stimulus duration).

lll. RESULTS

A. Classification and Latency Results

Latency was quantified as the interval from stimulus
onset to command output, synchronised using LSL
markers, and expressed as mean * SD. A latency
threshold of <2.0s was established as the requirement
for real-time feasibility [13][29]. The Friedman test,
applied across 90 subject-session combinations (30
participants x 3 sessions), confirmed statistically
significant differences in classifier performance (x? =
180.0, p < 0.001), in line with methodological
recommendations for comparing multiple classifiers
over multiple datasets [30]. Post-hoc pairwise
comparisons using the Wilcoxon signed-rank test with
Bonferroni correction showed that all pairwise
differences were significant (p < 0.001), as detailed in
Table 2. The effect sizes (r) were calculated from
Wilcoxon Z-statistics, where N = 90. The resulting
values ranged from 0.45 to 0.89, indicating moderate
to significant effects [31]. These values exceed
conventional thresholds (r = 0.5) for strong effects,
confirming meaningful practical differences between
classifiers beyond statistical significance. The RF
classifier demonstrated superior performance over
both SVM and ANN models, consistent with previous
findings on tree-based methods for SSVEP
classification. [9]. Furthermore, although both
alternative models performed poorly relative to RF, the
ANN outperformed SVM, suggesting that even
suboptimal neural architectures may outperform
kernel-based methods in high dimensional SSVEP
feature spaces.

B. Multi-Objective Cost Function

To quantitatively assess the trade-off between
decoding performance and system responsiveness, a
multi-objective cost function is adopted, and the
resulting scores are summarised in Table 3. The
weighted cost function is defined as Eq. (6):

f(x) = w;(1 — ACC) + w, <t L ) (6)

where ACC denotes the classification accuracy and L
represents the computational latency of the decoding
pipeline. The weights w; = 0.6 and w, = 0.4 reflect the
relative importance assigned to accuracy and latency,
respectively, while T,,,, =2.0s corresponds to the
maximum allowable latency for real-time operation.
This weighted sum formulation enables a single scalar
metric to compare classifiers under competing
objectives, where lower values indicate a more
favourable balance between reliable decoding and
responsive control. RF is the optimal classifier for real-
time BCI operation, as shown in (3). RF achieved the
lowest cost value (f(x) = 0.094), demonstrating an
excellent balance between high classification accuracy
(87.24%) and minimal computational latency (0.09s).
The ANN classifier exhibited a slow response time
(0.12s) and a substantially lower accuracy (27.14%),
resulting in a considerably higher cost value (f(x) =
0.461). The SVM classifier performed the poorest

Table 2. Pairwise statistical comparisons of
classifier performance

Comparison : -value Effect Significance
P value P Size (r) 9
RFvsSVM 845 <0001 089  ighly
Significant
Highly
RF vs ANN 8.06 <0.001 0.85 Significant
SVM vs ANN 427 <0.001 0.45 Significant

Table 3. Cost function evaluation of SVM, RF, and
ANN classifiers

e-ISSN: 2656-8624

Model Accuracy Latency (s) f(x)
SVM 0.185 4.92 1.474
RF 0.872 0.09 0.094
ANN 0.271 0.12  0.461

across both metrics, yielding the highest cost value (f(x)
= 1.474) due to its combination of low accuracy
(18.52%) and the highest computational latency
(4.92s). These results underscore that, while latency
must remain below the 2.0s threshold for practical
applications, classification accuracy remains the
dominant factor in determining overall BCI
performance, as reflected by the higher weight
assigned to accuracy (w; = 0.6) in the cost function, as
presented in Table 3. These aggregated
measurements provide a comprehensive picture, but
they don’t reveal misclassification tendencies specific
to each class. We examined the confusion matrix
closely to understand how predictions were distributed
across the six types of navigation directives Fig. 1.

C. Latency Measurement

Latency was operationally defined as the time interval
between stimulus onset and final command output.

Corresponding author: Anderias Eko Wijaya, ekowjy09@universitasmandiri.ac.id, Department of Informatics Engineering, Faculty of

Engineering, Universitas Mandiri, Subang, Indonesia.
DOI: https://doi.org/10.35882/ijeeemi.v8i1.295

Copyright © 2026 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This
work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

21


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:e@poltekkesdepkes-sby.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.295
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 17-30, February 2026

To ensure precise temporal alignment, the LSL
protocol was used to synchronise stimulus presentation
and EEG acquisition with sub-millisecond accuracy. A
unique event marker was inserted into the EEG stream
at the moment each visual stimulus was displayed on
screen, serving as the time zero reference for latency
calculation. Computational latency the time required for
signal acquisition, preprocessing, feature extraction,
and classification, was measured empirically by logging
system timestamps at each stage of the processing
pipeline. These timestamps were captured using high-
resolution internal timers within the Python
environment, and the total computational time was
calculated as the difference between the event marker
timestamp and the timestamp at which the
classification command was issued. To ensure
measurement consistency, the timing procedure was
applied uniformly across all sessions using the same
hardware and software configuration, and latency
statistics are reported as mean + standard deviation
across trials. The stimulus duration was fixed at 1.0s,
while the average computational latency across all
trials was 0.09 £ 0.03s for the best performing RF

Table 4. Classification and latency (mean * SD)
across 30 participants.

Model ,(Ao/c(:)():uracy Macro-F1 l(-tl;iltqs/min) I(_Sa)tency
svm 1892 0182%  gp4x01 392%
ST O sonas 08
an L SEE j0s09 Bl
classifier, yielding a total decoding latency of
approximately 1.09s per decision. Notably, the

observed variability is primarily attributable to
differences in preprocessing and feature extraction
time, whereas classification time contributed only a
minor fraction of the total latency. This value is well
within the widely accepted < 2.0s threshold for real-time
BCI responsiveness [13], indicating that the proposed
pipeline is suitable for online deployment.
Nevertheless, the effective command cycle used for
ITR computation is longer (= 3.0 s) due to the inclusion
of inter-trial intervals, which should be considered when
interpreting throughput and user-perceived
responsiveness. Inter-subject variability in latency was
also evaluated. The standard deviation values reported
in Table 4 reflect this variability across 30 participants,
each with three sessions (N = 90). Minor fluctuations
were observed and primarily attributed to differences in
EEG signal quality, participant attention, and temporal
jitter in Bluetooth transmission from the EMOTIV

headset. Nonetheless, no significant outliers were
identified, indicating that the system is robust to user-
specific and hardware-induced variations

D. Confusion Matrix Analysis

In addition to classification accuracy and latency,
efficiency was assessed using the ITR, a commonly
used parameter in BCIl evaluation [28]. RF again
showed greater efficiency, with an average ITR of 35.0
bits/min, far better than that of ANN and SVM. Even
while ANN had very low latency, its poor accuracy led
to unpredictable ITR performance, showing that high
speed alone does not guarantee good communication
in BCI applications. The achieved ITR of 35.0 bits/min
for the RF classifier represents a substantial
communication throughput for a non-invasive, real-time
SSVEP-BCI system. In the context of drone navigation,
this ITR allows for six distinct commands to be reliably
issued in rapid succession, enabling responsive, multi-
directional control. While it may not yet match the
precision of conventional interfaces such as manual
joysticks or gaze-based systems (which benefit from
near-instantaneous input latency and virtually zero
classification delay), the current ITR is sufficient for
semi-autonomous navigation scenarios, waypoint
setting, or discrete directional commands. Notably, the
system’s ITR is achieved with minimal user training and
low cognitive demand, owing to the passive nature of
SSVEP, making it suitable for users with limited motor
control or high fatigue susceptibility. Compared to
hybrid BCI paradigms or asynchronous control
methods, the proposed system strikes a viable balance
between speed, accuracy, and usability, especially in
constrained environments or assistive technology
settings.

Additionally, a correlation analysis was conducted
to confirm the reliability of neural feature extraction,
following established CCA-based SSVEP
methodologies [16]. The results showed that the
projected outputs and target signals were quite similar,
which showed that the RF-based classification pipeline
was robust. All of these data show that RF not only
performs well statistically but also strikes the optimal
balance among speed, accuracy, and neural
correlation. This makes it the best model for real-time
SSVEP-based BCI devices.

E. Confusion Matrix Analysis

To enhance the characterisation of classifier reliability,
Fig. 1 presents the normalised confusion matrices for
each model. The RF classifier demonstrates distinct,
well-defined decision boundaries, with predictions
strongly aligned along the diagonal, indicating
consistent recognition across all six navigation
commands. The RF classifier achieved a macro
average classification accuracy of 87.24%, with
individual class accuracies as follows: land (87.89%),
left (87.75%), right (87.34%), backward (86.93%),
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forward (86.77%), and takeoff (86.78%). This
performance distribution reflects robust and equitable
classification capability across all command types. The
confusion pattern reveals that most misclassifications
were minor, with error rates below 3.0%. The most
frequent confusions occurred between takeoff and land
(2.95%), backwards and right (2.95%), and forward and
land (2.97%). These minimal misclassifications
suggest that the RF classifier effectively captures the
discriminative frequency phase characteristics of
SSVEP responses. In contrast, the ANN confusion
matrix shows substantial misclassification across
classes, with pronounced overlap between adjacent
command pairs (particularly between forward-left and
backwards-right). This pattern explains its suboptimal
information transfer rate despite lower computational
latency; the model generates rapid but unreliable
predictions. Similarly, the SVM displays extensively
scattered  predictions  without clear diagonal
dominance, indicating inadequate discrimination of
SSVEP response patterns.

Collectively, the summary metrics in Tables 2-4 and
the detailed error patterns in Fig. 1 confirm that RF

provides the most favourable balance among accuracy,
computational efficiency, and operational robustness.
This establishes RF as the most suitable classifier for
real-time SSVEP-based BCI navigation tasks,
outperforming both SVM and ANN in both aggregate
performance and class-specific stability. RF was more
efficient, with an average ITR of 35.0 bits/min, far better
than that of ANN and SVM. Even while ANN had very
low latency, its poor accuracy led to unpredictable ITR
performance, showing that high speed alone does not
guarantee good communication in BCI applications.
Additionally, a correlation analysis was conducted to
confirm the reliability of neural feature extraction,
following established CCA-based SSVEP
methodologies [3]. Correlation analysis between the
extracted SSVEP features and the reference templates
yielded high correlation coefficients (mean p > 0.6, p <
0.001), confirming the effective capture of neural
responses. All of these data show that RF not only
performs well statistically but also strikes an optimal
balance between speed, accuracy, and neural
correlation. This makes it the best model for real-time
SSVEP-based BCI devices.

Normalized Confusion Matrix - Random Forest Classifier
Macro Average Accuracy: 87.24%
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Backward
8.8
Forward -
o
o}
86 &
Land -
< o
2 5
L] 3
ped
| o
Left L84 2
g
Right A
L8.2
Takeoff
. . . . L—Llgo
& & o
& & & &
& <(D
Q}’D
Predicted Label
Fig. 1. Normalized confusion matrix for the RF classifier
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Fig. 2. Top misclassifications by absolute count

F. Error Analysis of the RF Classifier

A comprehensive error analysis was performed on Fig.
2 and Fig. 3 to assess the reliability of the RF classifier
further. Error analysis confirmed the robustness of the
RF classifier. As shown in Fig. 2, misclassifications
were not random. Still, they were concentrated in
specific command pairs, most notably between takeoff
— land and backward — right, each contributing to less
than 3% of total errors. These confusions likely stem
from the perceptual similarity of flickering frequencies
(e.g., 11.25 Hz vs. 12.0 Hz) and the spatial proximity of
stimulus regions on the interface, leading to
overlapping neural responses in the visual cortex. Fig.
3 further supports this observation, showing a class-
wise error distribution with minimal variance (range:
12.1-13.2%; CoV: 3.6%), suggesting that no single
command dominated the misclassification profile. This
balanced error pattern implies that the classifier did not
exhibit systematic bias toward any particular class, an
essential requirement for safe and responsive BCI-
based drone control systems. To reduce such inter-
class ambiguities, future iterations of the system could
benefit from (1) increasing the angular distance
between frequently confused stimuli to reduce saccadic
overlap. (2) Widening frequency gaps to avoid
harmonic interference. (3) Exploring hybrid modulation
techniques (e.g., frequency + phase or colour) to
enhance class separability. Collectively, these findings

strengthen the evidence that Random Forest
classifiers, when properly tuned, can maintain stable
and equitable classification performance across
multiple commands, which is crucial for real-time
navigation applications.

IV. Discussion

The RF classifier demonstrated superior performance
for multi-class SSVEP classification with consumer-
grade EEG data. Its ensemble architecture effectively
captured complex, nonlinear interactions while
mitigating overfitting, leading to balanced, high
accuracy across all commands (Macro F1 = 0.87). In
contrast, the SVM with a radial basis function (RBF)
kernel failed to generalise, performing barely above
chance. This is likely due to the inherent difficulty that
margin-based classifiers face in modelling the  non
linear dynamics of SSVEP responses. This challenge
is magnified in a high-dimensional, multi-class setting.
The ANN classifier outperformed SVM but remained
considerably inferior to RF. Its suboptimal accuracy
suggests that the shallow feedforward structure was
inadequate for learning meaningful spatiotemporal
features, and likely overfitted due to the limited training
data. However, its low computational latency highlights
the efficiency advantage of neural models. On the other
hand, the SVM performed close to chance level, which
may reflect the difficulty of margin-based methods in
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modelling the narrow-band, nonlinear, and multi-class
characteristics of SSVEP signals.

[Mean: 12.75% £ 0.46% | CV: 3.6% | Range: 12.1% - 13.2% |
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Despite these limitations, both models may remain
relevant in lightweight or low-resource applications
where rapid deployment or binary classification is
prioritised. Future work may explore deeper
architectures such as CNNs or RNNs, or hybrid
ensemble deep learning methods, to improve
robustness while maintaining real-time feasibility.

To contextualise these findings, we compared our
results with several previous SSVEP-BCI studies using
similar hardware. MartiSius and DamaSeviCius [32]
used SVM with an Emotiv EPOC+ and reported 80.5%
accuracy. Asanza et al. [33] applied XGBoost to the
same headset, achieving 57%. Kotodziej et al. [34]
used a CNN and reached 72% accuracy, while Wang
et al. [35] employed an attention-guided ANN yielding
85.49%. Our RF model exceeded these benchmarks
with an accuracy of 87.24%, demonstrating that
classical ensemble learning remains highly competitive
even compared to more complex deep learning
solutions, especially when latency, training data
constraints, and computational cost are considered.
A. System Performance and Classifier Evaluation
The integrated system, combining the consumer-grade
EEG headset with the optimised processing pipeline

and RF classifier, successfully enabled real-time drone
control with six commands. It achieved a high intra-
subject accuracy of 87.24 + 4.8% with a 1.0s decision
window and 0.09s computational latency (1.09s total
decoding time), well within the 2s responsiveness
threshold for practical use. Based on an effective
command cycle of approximately 3.0 s, this
corresponds to an information transfer rate (ITR) of
35.0 bit/min. The choice of a 1-3s jittered inter-trial
interval underlying this command cycle represents a
deliberate compromise between communication
throughput and user comfort, as the shorter average
cycle elevates ITR. In contrast, temporal jitter mitigates
habituation and better approximates naturalistic control
demands. This competitive performance, especially
given the affordable hardware, stems from key design
choices: (i) frequency selection within the low-
alpha/beta range to maximise SSVEP response and
minimise harmonics [36] (ii) a hybrid feature set (CCA,
spectral power, SNR) for robustness without high
computational cost [13]; and (iii) a 1s analysis window
with 50% overlap to balance speed and stability.
However, two significant limitations persist for real-
world applications: reliance on a single modality
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(SSVEP) and the need for subject specificcalibration.
These make the system susceptible to visual
fatigue/attentional lapses, hindering rapid deployment.
Future work should therefore explore hybrid BCI
paradigms (e.g., combining SSVEP with motor imagery
or P300) to distribute cognitive load and improve
overall robustness [11][12][37][38].

A primary limitation of this study is that validation
was conducted under controlled laboratory conditions,
which do not fully capture the complexities of real-world
environments. In practice, factors such as ambient
lighting  variability,  visual distractions, and
electromagnetic interference may compromise signal
quality, particularly when using consumer-grade EEG
headsets with limited shielding and dry electrodes
[5][6]. Additionally, user-related issues, such as
sustained visual fatigue during prolonged SSVEP
interactions and attention drift, can significantly affect
the amplitude and consistency of evoked responses,
thereby reducing classification accuracy and
increasing latency [22]. Another practical limitation is
the need for subject specificcalibration, which, although
brief (typically 3-5 minutes), may affect scalability and
user experience, especially in mobile or time-sensitive

applications. While the current setup requires
individualised training to elicit optimal SSVEP
responses, future work will explore calibration

minimisation strategies, including transfer learning,
domain adaptation, and pooled subject-independent
models. Furthermore, hybrid BCI paradigms (e.g.,
SSVEP + eye tracking or motor imagery) and adaptive
interfaces may offer resilience against non-stationarity
and enable more robust deployment in naturalistic
settings [12][37][39].

B. Clinical Implications and

Applications
This low-cost SSVEP-BCI system demonstrates strong
potential for clinical neurorehabilitation and assistive
technologies. With a classification accuracy of 87.24%
and a total decoding latency of approximately 1.09s,
the system meets real-time usability thresholds,
making it suitable for hands-free operation of assistive
devices such as brain-controlled wheelchairs,
prosthetic arms, or smart home interfaces. Each of the
six available commands may be assigned to directional
navigation or functional control, enabling individuals
with severe motor impairments, such as those with ALS
or spinal cord injuries, to interact with their environment
non-invasively [40][41][42].

Unlike conventional control interfaces that rely on
fine motor dexterity (e.g., joysticks) or dedicated eye
tracking hardware (e.g., gaze-based systems), the
proposed SSVEP-BCI operates through passive visual
attention to flickering targets without requiring precise
muscular control, imposing minimal physical or

Therapeutic

cognitive demands on the user. This makes it
particularly valuable for patients with fatigue
susceptibility, attention drift, or ocular impairments.
Furthermore, its use of consumer-grade EEG and
compact software architecture allows for low-cost
deployment in home-based therapy or resource-
constrained clinics, broadening its accessibility and
impact [5][22]. In neurorehabilitation contexts,
repetitive engagement with SSVEP tasks can promote
functional reorganisation and improve visuomotor
attention, for instance, Chang et al. [43] showed that
visual attention feedback through EEG can reinforce
motor pathways, while Shen et al [22] demonstrated
the feasibility of hybrid BCI rehabilitation systems
combining SSVEP with electromyographic feedback
for upper limb recovery. Beyond assistive control, the
proposed system may serve as a dual-purpose
platform for both interaction and therapeutic training,
with high translational potential for personalised BCI
interventions.

C. Cross-Subject Generalizability Analysis

While this study focused on intra-subject performance,
cross-subject generalizability remains a significant
obstacle to the practical deployment of BCI. Inter-
subject variability in SSVEP responses, attributable to
anatomical differences, attentional states, and fatigue,
often results in a performance degradation of 7-20% for
non-personalised models [44][29]. This issue is further
exacerbated by the lower signal consistency inherent
in consumer-grade EEG devices [5][6]. Consequently,
addressing the generalisation challenge is a critical
direction for future work. Promising strategies to
enhance cross-subject robustness include leveraging
domain adaptation and transfer learning techniques to
fine-tune pre-trained models for new users with minimal
calibration data. [28][30]; developing advanced
subject-independent feature normalisation methods to
mitigate inherent physiological baseline differences
between wusers [9]; and implementing adaptive
calibration protocols that facilitate continuous model
updates during real-time operation, allowing the system
to dynamically adjust to a user’s unique and evolving
brain signal characteristics [13]. Ultimately, overcoming
the generalisation hurdle is paramount to translating
SSVEP-BCI from controlled laboratory demonstrations
into reliable, practical, real-world applications.

V. Conclusion

This study successfully demonstrated the feasibility of
a six-command SSVEP-BCI using consumer-grade
EEG equipment that is capable of real-time operation
for drone command decoding. Among the three
classifiers evaluated, the RF algorithm was identified
as the most robust and practical choice. It achieved an
optimal balance between high classification accuracy
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(87.24 + 4.8%) and a low total decoding time of
approximately 1.09s (comprising a 1s decision window
and 0.09s computational latency), thereby satisfying
the commonly cited 2s responsiveness requirement for
practical BCI use. When the full command cycle of
approximately 3.0s is taken into account, this
corresponds to an information transfer rate (ITR) of
35.0 bit/min. The superiority of RF was further
confirmed by its lowest multi-objective cost value (f(x)
= 0.094) compared with SVM and ANN. In contrast, the
ANN showed that an intermediate cost value (f(x) =
0.461) was insufficient to compensate for its poor
discriminative capability (27.14 £ 1.5% accuracy). The
SVM performed the worst, yielding the highest cost (f(x)
= 1.474) due to its very low accuracy (18.52 + 1.4%)
and excessively high latency (4.92s), rendering it
impractical for real-time use. Future work will focus on
three concrete directions to enhance real-world
applicability. First, the system will be tested in dynamic,
outdoor environments to evaluate its resilience to visual
noise, lighting variations, and motion artefacts. Second,
adaptive learning techniques such as transfer learning
or subject independent models will be explored to
minimise calibration time and improve cross-user
generalisation. Third, we plan to integrate multimodal
inputs such as EOG and EMG into the BCI pipeline,
building on recent hybrid BCI systems that combine
EEG with ocular and muscular biosignals to improve
robustness, command reliability, and control bandwidth
in assistive and rehabilitation settings [47][48][49].
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