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Abstract 

Steady state visual evoked potential (SSVEP) brain-computer interfaces (BCI) 
constitute a promising, non-invasive, hands-free paradigm for directly 
controlling external devices through neural activity. Despite their strong 
potential, practical deployment remains limited by dependence on expensive, 
laboratory-grade electroencephalography (EEG) systems, which reduce 
accessibility, portability, and scalability. To address this limitation, this study 
designs and evaluates a real-time capable six-command SSVEP-BCI for 
simulated drone navigation using a low-cost, consumer-grade EEG headset. 
The proposed system is explicitly oriented toward real-world usability, with 
emphasis on computational efficiency, robustness, and affordability. An 
adaptive signal processing pipeline was developed to ensure reliable SSVEP 
detection under practical conditions. The pipeline combines spectral feature 
extraction, capturing frequency-domain responses elicited by periodic visual 
stimuli, with spatial feature analysis to exploit inter-channel information and 
enhance class discrimination. The resulting feature set was evaluated using 
three supervised machine-learning classifiers, Support Vector Machine 
(SVM), Random Forest (RF), and Artificial Neural Network (ANN), allowing a 
systematic comparison in terms of accuracy and processing latency. 
Experiments were conducted on EEG data collected from 30 participants. The 
results demonstrate that RF strikes the best balance between classification 
performance and real-time feasibility, achieving an accuracy of 87.24% with a 
low computational latency of 0.09s and a high information transfer rate (ITR) 
of 35.0 bits/min. In comparison, ANN failed to reach sufficient accuracy for 
reliable multi-command operation, while SVM yielded only marginal 
performance. Overall, these findings confirm the feasibility of low-cost, multi-
command SSVEP-BCI and underscore their potential for assistive 
technologies, teleoperation, and human-computer interaction applications 
that require responsive, economical solutions. 
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I. Introduction 
Steady state visual evoked potential (SSVEP) based 
brain-computer interfaces (BCI) are renowned for their 
high signal-to-noise ratio, minimal user training, and 
high information transfer rates (ITR) [1][2]. These 
attributes make them ideal for real-time control 
applications, such as navigating drones or robotic arms 
[3][4]. While laboratory-grade electroencephalography 
(EEG) systems deliver robust performance, their 
prohibitive cost restricts widespread accessibility. 
SSVEPs are rhythmic brain responses elicited when 
individuals focus on visual stimuli flickering at specific 

frequencies, primarily detected over the occipital 
cortex. Their frequency-locked nature makes them 
highly suitable for BCI applications, offering robustness 
against noise and fast detection with minimal 
calibration. However, the application of SSVEP to 
drone navigation poses challenges, including 
overlapping harmonic responses, user fatigue from 
prolonged visual focus, and difficulty maintaining 
command separability under real-world constraints. 
The advent of affordable, consumer-grade EEG 
headsets (e.g., EMOTIV) presents a viable alternative 
for practical BCI deployment [5]. However, these 
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devices often exhibit lower signal quality and timing 
imprecision, which complicates the reliable recognition 
of multiple commands [6]. Various signal processing 
techniques have been employed to address these 
challenges, including canonical correlation analysis 
(CCA) and filter bank extensions (FBCCA) [7][8], 
alongside classifiers like Support Vector Machines 
(SVM), Random Forests (RF), and Artificial Neural 
Networks (ANN) [8][9]. Recent investigations have also 
explored deep learning and transformer architectures 
for enhanced performance [10][11]. 

However, deep learning and transformer-based 
models typically require large labelled datasets, 
intensive training resources, and longer inference 
times. These requirements make them less suitable for 
real-time BCI systems, especially when deployed on 
consumer-grade EEG devices with limited signal 
quality and processing capabilities. In contrast, 
classical machine learning models such as SVM, RF, 
and ANN offer faster training, lower computational 
overhead, and better generalizability on small sample 
data characteristics that align well with the constraints 
of affordable, real-time multi-command BCI systems. 
Although prior research has demonstrated BCI 
controlled drones [12][13], these studies underscore 
that high accuracy alone is insufficient; system latency 
must remain under two seconds for feasible real-time 
operation. A direct comparison of classical machine 
learning classifiers for this specific application using 
consumer-grade hardware is presently lacking. To 
bridge this gap, this study introduces a real-time, six-
command SSVEP-BCI framework for drone navigation 
using a standard consumer-grade EEG headset. A 
dynamic processing pipeline is implemented, and three 
classifiers, SVM, RF, and ANN, are evaluated, with a 
focus on the critical trade-off between classification 
accuracy and latency. Our results, derived from 30 
participants, demonstrate that the RF classifier 
achieves an optimal balance, with 87.24% accuracy, a 
latency of 0.09s, and an ITR of 35.0 bits/min. These 
findings highlight the viability of low-cost, multi-
command SSVEP-BCI for practical assistive and 
robotic applications. 

Despite growing interest in SSVEP-BCI systems, 
prior studies have rarely compared classical machine 
learning classifiers (e.g., RF, SVM, and ANN) 
specifically for multi-command control with consumer-
grade EEG headsets. While some works explore 
classification in low-cost settings, they often rely on 
limited command sets, offline paradigms, or emphasize 
deep learning models without benchmarking classical 
approaches. For instance, [14] highlights the use of 
consumer-grade EEGs in cognitive studies, with a 
limited focus on real-time control tasks. Meanwhile, [15] 
review multiple EEG-based BCI applications but 
observe limited comparisons across classifiers like 

SVM, ANN, and RF in practical multi-command 
contexts. This study addresses this gap by performing 
a systematic, real-time evaluation of multiple classical 
classifiers for drone navigation using affordable EEG 
equipment. 

This study is motivated by several critical 
challenges in developing real-time BCI systems using 
affordable hardware: (1) maintaining high classification 
accuracy despite the lower signal-to-noise ratio of 
consumer-grade EEG devices, (2) minimizing system 
latency to enable smooth multi-command navigation, 
and (3) ensuring clear separability between SSVEP 
stimulus frequencies to avoid command ambiguity. To 
this end, this study aims to evaluate classical classifiers 
for real-time drone control using SSVEP signals 
acquired from a consumer-grade EEG system.The 
primary research questions are: 
RQ1: Which classifier offers the best balance between 
accuracy and latency for multi-command SSVEP 
classification in a consumer-grade EEG setup? 
RQ2: Can real-time control of a drone be achieved 
reliably using SSVEP signals detected through a low-
cost EEG device under practical constraints? 

This study addresses key practical challenges in 
deploying SSVEP-based brain-computer interfaces 
using consumer-grade EEG hardware for real-time, 
multi-command control. The main contributions are 
summarised as follows: 
1. A real-time six-command SSVEP-BCI system is 

designed and evaluated for drone navigation using 
a consumer-grade EEG headset, demonstrating 
stable multi-command control under low-cost 
hardware constraints. 

2. An adaptive signal processing pipeline is proposed 
that integrates spectral and spatial feature 
representations to improve class separability, 
explicitly addressing the reduced signal-to-noise 
ratio and timing imprecision inherent to consumer-
grade EEG devices. 

3. A systematic real-time comparison of classical 
machine learning classifiers (SVM, RF, and ANN) is 
conducted under identical experimental conditions, 
with explicit analysis of the accuracy latency trade-
off critical for practical BCI operation. 

II. Methods 
A. Participants 
Thirty healthy adults (N=30; mean age=22.4±2.1 years; 
range=19-26) participated. All had normal or corrected 
to normal vision, no neurological or psychiatric history, 
and were right-handed, as assessed by the Edinburgh 
Handedness Inventory [16]. Written informed consent 
was obtained in accordance with institutional ethics 
approval and the Declaration of Helsinki. Before the 
experimental session, all participants completed a brief 
screening interview to confirm eligibility and to ensure 
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that they were comfortable with flickering visual stimuli. 
They were then given a 5-minute familiarisation 
session in which the EMOTIV EPOC+ headset was 
fitted and calibrated while they practised focusing on 
each of the six SSVEP targets under supervision. 
During this training, participants were instructed to 
maintain fixation on the cued flickering region and to 
avoid blinking or unnecessary movements to minimise 
artefacts. This familiarisation procedure was 
implemented to enhance participant comfort, reduce 
anxiety, shorten adaptation time, and improve signal 
stability during formal data collection. 
B. EEG Acquisition 
EEG data were acquired using a wireless 14-channel 
EMOTIV EPOC+ headset in accordance with the 
international 10-20 system. The integrated Common 
Mode Sense (CMS) and Driven Right Leg (DRL) 
reference system enhanced common-mode noise 
rejection. [17]. Signals were sampled at 128 Hz with 16-
bit resolution, adequate for SSVEP detection. [6]. The 
fixed electrode layout covers the following positions: 
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, 
and AF4, providing sufficient spatial coverage for both 
occipital signal acquisition and artefact monitoring 
[14][18]. For SSVEP acquisition, primary focus was 
placed on occipital (O1, O2) and adjacent parietal (P7, 
P8) electrodes, which overlie visual cortical areas and 
are widely recognised as optimal sites for Steady state 
visual evoked potential detection. Although all 14 
channels were recorded, only these occipito-parietal 
electrodes were retained for subsequent analysis due 
to their high SSVEP sensitivity. The full channel 
configuration also enables detection of signal artefacts 
and supports integration with a hybrid BCI [14][15]. 

The selection of EMOTIV EPOC+ is motivated by its 
affordability and portability. However, it presents 
several limitations: (1) increased susceptibility to 
motion artefacts and environmental noise; (2) lower 
signal-to-noise ratio than clinical-grade EEG; and (3) 
potential latency from Bluetooth-based transmission. 
These constraints have been reported in prior 
validation studies using the EPOC+ headset in similar 
real-time SSVEP-BCI systems [14][15]. Sessions were 
conducted in an electromagnetically shielded room with 
noise-controlled lighting, with stimulus event markers 
synchronised via the Lab Streaming Layer (LSL) 
protocol to ensure precise temporal alignment between 
stimuli and EEG signals. The EMOTIV EPOC+ headset 
was mounted according to manufacturer guidelines, 
with continuous monitoring of signal quality across all 
14 channels; occipital (O1, O2) and parietal (P7, P8) 
electrodes served as the primary SSVEP recording 
sites, while the remaining channels supported noise 
tracking, reference stability, and potential hybrid 
feature integration. 
C. Visual Stimuli and Command Mapping 

Six frequencies were displayed on a monitor using 
sinusoidal modulation: 9.0 Hz (left), 10.5 Hz (right), 
11.25 Hz (land), 12.0 Hz (forward), 13.5 Hz 
(backwards), and 14.25 Hz (takeoff), as presented in  
Table 1. Stimuli were confined to 8-15 Hz to elicit robust 
SSVEP responses while ensuring participant comfort 
and minimising harmonic interference [16]. 
Frequencies were non-harmonic to enhance 
separability. [19].  

Table 1. Mapping of stimulus frequencies to drone 
commands. 

Feature vectors (FFT peaks, CCA) were used for 
classification. Stimuli validation involved 10second 
preliminary recordings; inconsistent stimuli were 
discarded [16]. Supercycle patterns mitigate display 
refresh-rate constraints at non-integer frequencies. 
The session included six blocks (one per frequency). 
Each trial included 5s stimulation and 1-3 seconds of 
rest. Frequencies were presented 60 times in random 
order. A 5-minute acclimatisation period and 1-2-
minute rest intervals were included. 
D. Experimental Design 
Each experimental session was conducted in a quiet, 
lighting-controlled indoor environment. Participants 
were seated approximately 60 cm from a 15-inch 
monitor, with consistent table and chair positioning 
maintained throughout all trials to ensure stable visual 
angles. Lighting was kept moderate to prevent glare 
and enhance the visibility of stimuli. Each session 
consisted of multiple runs, and each run included 
randomised command trials to prevent learning bias. In 
each trial, (1) a textual cue appeared on screen (e.g., 
“Look at TAKEOFF”). (2) the stimulus flickered for 5 
seconds at its assigned frequency. (3) a rest interval of 
1-3 seconds followed each trial to reduce fatigue and 
allow EEG baseline recovery. To minimise command 
overlap or visual confusion, flickering regions were 
positioned with sufficient angular separation. Critically, 
commands with similar frequency values were not 
placed adjacent on screen. This spatial design helped 
reduce classification ambiguity due to perceptual 
interference. If participants reported signs of visual 
fatigue or loss of concentration, a brief pause (≤2 
minutes) was introduced before continuing the session. 
Stimulus validation was performed through 10-second 

Command 
Frequency 
(Hz) 

Display Pattern 

Forward 12.00 White/black blink 

Backward 13.50 White/black blink 

Left   9.00 White/black blink 

Right 10.50 White/black blink 

Takeoff 14.25 White/black blink 

Land 11.25 White/black blink 
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pilot recordings for each frequency during the setup 
phase. Any stimuli that failed to elicit consistent SSVEP 
peaks were replaced or adjusted [20]. A supercycle-
based flicker pattern was used to ensure accurate 
generation of non-integer frequencies on a 60 Hz 
monitor. Event timing was synchronised using the LSL 
protocol, enabling millisecond-level precision for 
stimulus-event alignment. 
E. Signal Pre-processing 
A standardised preprocessing pipeline was applied 
[20]. The data were filtered using a 6-45 Hz band-pass 
filter, a 50 Hz notch filter, and automated artefact 
rejection (epochs with amplitudes exceeding ±200 µV 
were excluded). Data were segmented into 1second 
epochs with 50% overlap for analysis. To ensure signal 
clarity, we excluded epochs with amplitude excursions 
exceeding ±200 µV, a conservative threshold used to 
eliminate contamination from eye blinks, jaw clenching, 
and other physiological noise. Missing or irregular 
samples, comprising less than 2% of the dataset, were 
handled using linear interpolation and 
forward/backward filling strategies. While all 14 
channels from the EMOTIV EPOC+ headset were 
recorded, only the occipital (O1, O2) and parietal (P7, 
P8) channels were selected for analysis, as supported 
by prior literature [20]. The cleaned EEG signals were 
then segmented into 1second epochs, each with 50% 
overlap to increase temporal resolution and improve 
classifier robustness. To synchronise EEG data with 
the corresponding visual stimuli, we used LSL 
timestamps, ensuring precise time-locking between 
stimulus onset and EEG acquisition. This combination 
of filtering, artefact rejection, and epoch segmentation 
followed a structure inspired by the PREP pipeline, 
which emphasises reproducibility and signal integrity in 
large-scale EEG analysis [20]. 
F. Feature Extraction 
To capture frequency-specific information and enhance 
the robustness of the classification framework, 
complementary feature sets were extracted from each 
preprocessed 1-second EEG epoch: 
CCA: Correlation coefficients were computed between 
the multi-channel EEG signals and sinusoidal 
reference templates at the fundamental stimulus 
frequency and its first three harmonics [21]. The 
canonical correlation coefficient 𝜌 It is defined  as 

shown in Eq. (1) [7][16]: 

ρ = max
𝑐𝑜𝑣(𝑋𝑤𝑥

, 𝑌𝑤𝑦
 )

√𝑣𝑎𝑟(𝑋𝑤𝑥
). (𝑌𝑤𝑦

)
𝑤𝑥,𝑤𝑦

 
(1) 

where X represents the multi-channel EEG data, Y is 
the sinusoidal reference signal, and 𝑤𝑥 and 𝑤𝑦. 

Spectral Features based on FFT: Amplitude spectra 
were derived around each target frequency (±0.5 Hz) 

and its harmonics. The extracted features included 
narrowband log power, signal-to-noise ratio (SNR), and 
coherence metrics. [22][23]. 
G. Classification Models 
Three supervised machine learning classifiers were 
evaluated: SVM, RF, and an ANN [8][9]. The decision 
functions of the evaluated classifiers are summarised 
as follows: SVM is employed as a classification method 
that separates data points by constructing an optimal 
decision boundary in the feature space. For an input 
vector 𝑥, the SVM decision function is given by Eq. (2) 

[24]. 
𝑦̂ = sign(𝑤⊤ϕ(𝑥) + 𝑏) (2) 

where 𝑤 denotes the weight vector, 𝑏 is the bias term, 

and ϕ. represents a feature mapping function. The 

class label is determined by the sign of the decision 
function, enabling SVM to handle both linear and 
nonlinear classification tasks. RF is employed as an 
ensemble classification method that combines multiple 
decision trees to enhance prediction accuracy and 
robustness. For an input sample 𝑥, each tree ℎ𝑘(𝑥) 
produces an individual class prediction, and the final 
output is determined using majority voting, which can 
be expressed as Eq. (3) [25]. 

𝑦̂ = mode{ℎ𝑘(𝑥)}𝑘=1
𝐾  (3) 

where 𝐾 denotes the total number of trees in the 

ensemble. This voting mechanism effectively reduces 
model variance and enhances classification stability 
when dealing with complex feature representations. 
ANN is employed to model nonlinear relationships 
between input features and output classes. The 
activation of the hidden layer is computed as shown in 
Eq. (4) [26]. 

𝑎 = σ(𝑊𝑥 + 𝑏),  𝑦̂ = softmax(𝑊𝑜𝑎 + 𝑏𝑜) (4) 

where 𝑊 and 𝑏 represent the weight matrix and bias 
vector, respectively, and σ denotes the activation 

function. The final class prediction is obtained using the 
softmax function, which outputs class probabilities and 
enables multiclass classification. For the SVM, a radial 
basis function (RBF) kernel was employed. The 
hyperparameters C and γ were optimised through a 
grid search combined with 5-fold stratified cross-
validation. The RF classifier is an ensemble of 500 
decision trees. The number of features considered for 

splitting at each node was set to √𝑃, where P is the 

total number of features. The final class label was 
determined by majority voting. The ANN is a fully 
connected feedforward network that was implemented. 
The network comprised an input layer, a hidden layer 
with 128 units and ReLU activation, a dropout layer 
(rate=0.3), a second hidden layer with 64 units and 
ReLU activation, another dropout layer (rate=0.3), and 
a final output layer with six units and softmax activation. 
The model was compiled with the Adam optimiser 
(learning rate = 10−3, 𝛽1 = 0.9, 𝛽2 = 0.999, trained with 
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a batch size of 64 using categorical cross-entropy loss, 
and employed early stopping with a patience of 15 
epochs. The hybrid SSVEP-P300 fusion technique 
[12][27] It was not utilised in this study, but it is 
recognised as a potential avenue for future research. 
H. Evaluation Metrics 
The Information Transfer Rate (ITR) is calculated using 
[2], measuring the bitrate of the communication system 
as shown in Eq. (5)[28]. 

𝐼𝑇𝑅 = 60
𝑇⁄ [𝑙𝑜𝑔2 𝑁 + 𝑃 𝑙𝑜𝑔2 𝑃 + (1 − 𝑃) 𝑙𝑜𝑔2

1 − 𝑃

𝑁 − 1
] (5) 

where N is the number of classes (6), P is the 
classification accuracy, and T is the time in seconds 
required to issue a single command (including latency 
and stimulus duration). 

III. RESULTS 

A. Classification and Latency Results 
Latency was quantified as the interval from stimulus 
onset to command output, synchronised using LSL 
markers, and expressed as mean ± SD. A latency 
threshold of ≤2.0s was established as the requirement 
for real-time feasibility [13][29]. The Friedman test, 
applied across 90 subject-session combinations (30 
participants × 3 sessions), confirmed statistically 
significant differences in classifier performance (χ² = 
180.0, p < 0.001), in line with methodological 
recommendations for comparing multiple classifiers 
over multiple datasets [30]. Post-hoc pairwise 
comparisons using the Wilcoxon signed-rank test with 
Bonferroni correction showed that all pairwise 
differences were significant (p < 0.001), as detailed in 
Table 2. The effect sizes (r) were calculated from 
Wilcoxon Z-statistics, where N = 90. The resulting 
values ranged from 0.45 to 0.89, indicating moderate 
to significant effects [31]. These values exceed 
conventional thresholds (r ≥ 0.5) for strong effects, 
confirming meaningful practical differences between 
classifiers beyond statistical significance. The RF 
classifier demonstrated superior performance over 
both SVM and ANN models, consistent with previous 
findings on tree-based methods for SSVEP 
classification. [9]. Furthermore, although both 
alternative models performed poorly relative to RF, the 
ANN outperformed SVM, suggesting that even 
suboptimal neural architectures may outperform 
kernel-based methods in high dimensional SSVEP 
feature spaces. 
B. Multi-Objective Cost Function 
To quantitatively assess the trade-off between 
decoding performance and system responsiveness, a 
multi-objective cost function is adopted, and the 
resulting scores are summarised in Table 3. The 
weighted cost function is defined as Eq. (6):  

f(x) = w1(1 − ACC) + w2 (
L

tmax
) (6) 

where ACC denotes the classification accuracy and L 

represents the computational latency of the decoding 
pipeline. The weights w1 = 0.6 and w2 = 0.4 reflect the 

relative importance assigned to accuracy and latency, 
respectively, while 𝑇𝑚𝑎𝑥 = 2.0s corresponds to the 

maximum allowable latency for real-time operation. 
This weighted sum formulation enables a single scalar 
metric to compare classifiers under competing 
objectives, where lower values indicate a more 
favourable balance between reliable decoding and 
responsive control. RF is the optimal classifier for real-
time BCI operation, as shown in (3). RF achieved the 
lowest cost value (f(x) = 0.094), demonstrating an 
excellent balance between high classification accuracy 
(87.24%) and minimal computational latency (0.09s). 
The ANN classifier exhibited a slow response time 
(0.12s) and a substantially lower accuracy (27.14%), 
resulting in a considerably higher cost value (f(x) = 
0.461). The SVM classifier performed the poorest 

across both metrics, yielding the highest cost value (f(x) 
= 1.474) due to its combination of low accuracy 
(18.52%) and the highest computational latency 
(4.92s). These results underscore that, while latency 
must remain below the 2.0s threshold for practical 
applications, classification accuracy remains the 
dominant factor in determining overall BCI 
performance, as reflected by the higher weight 
assigned to accuracy (w₁ = 0.6) in the cost function, as 

presented in Table 3. These aggregated 
measurements provide a comprehensive picture, but 
they don’t reveal misclassification tendencies specific 
to each class. We examined the confusion matrix 
closely to understand how predictions were distributed 
across the six types of navigation directives Fig. 1. 
C. Latency Measurement 
Latency was operationally defined as the time interval 
between stimulus onset and final command output. 

Table 3. Cost function evaluation of SVM, RF, and 
ANN classifiers 

Model Accuracy Latency (s) 𝑓(𝑥) 

SVM 0.185 4.92 1.474 

RF 0.872 0.09 0.094 

ANN 0.271 0.12 0.461 

 

Table 2. Pairwise statistical comparisons of 
classifier performance 

Comparison 
Z-

value 
p-value 

Effect 
Size (r) 

Significance 

RF vs SVM 8.45 <0.001 0.89 
Highly 
Significant 

RF vs ANN 8.06 <0.001 0.85 
Highly 
Significant 

SVM vs ANN 4.27 <0.001 0.45 Significant 
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To ensure precise temporal alignment, the LSL 
protocol was used to synchronise stimulus presentation 
and EEG acquisition with sub-millisecond accuracy. A 
unique event marker was inserted into the EEG stream 
at the moment each visual stimulus was displayed on 
screen, serving as the time zero reference for latency 
calculation. Computational latency the time required for 
signal acquisition, preprocessing, feature extraction, 
and classification, was measured empirically by logging 
system timestamps at each stage of the processing 
pipeline. These timestamps were captured using high-
resolution internal timers within the Python 
environment, and the total computational time was 
calculated as the difference between the event marker 
timestamp and the timestamp at which the 
classification command was issued. To ensure 
measurement consistency, the timing procedure was 
applied uniformly across all sessions using the same 
hardware and software configuration, and latency 
statistics are reported as mean ± standard deviation 
across trials. The stimulus duration was fixed at 1.0s, 
while the average computational latency across all 
trials was 0.09 ± 0.03s for the best performing RF 

classifier, yielding a total decoding latency of 
approximately 1.09s per decision. Notably, the 
observed variability is primarily attributable to 
differences in preprocessing and feature extraction 
time, whereas classification time contributed only a 
minor fraction of the total latency. This value is well 
within the widely accepted ≤ 2.0s threshold for real-time 
BCI responsiveness [13], indicating that the proposed 
pipeline is suitable for online deployment. 
Nevertheless, the effective command cycle used for 
ITR computation is longer (≈ 3.0 s) due to the inclusion 
of inter-trial intervals, which should be considered when 
interpreting throughput and user-perceived 
responsiveness. Inter-subject variability in latency was 
also evaluated. The standard deviation values reported 
in Table 4 reflect this variability across 30 participants, 
each with three sessions (N = 90). Minor fluctuations 
were observed and primarily attributed to differences in 
EEG signal quality, participant attention, and temporal 
jitter in Bluetooth transmission from the EMOTIV 

headset. Nonetheless, no significant outliers were 
identified, indicating that the system is robust to user-
specific and hardware-induced variations 
D. Confusion Matrix Analysis 
In addition to classification accuracy and latency, 
efficiency was assessed using the ITR, a commonly 
used parameter in BCI evaluation [28]. RF again 
showed greater efficiency, with an average ITR of 35.0 
bits/min, far better than that of ANN and SVM. Even 
while ANN had very low latency, its poor accuracy led 
to unpredictable ITR performance, showing that high 
speed alone does not guarantee good communication 
in BCI applications. The achieved ITR of 35.0 bits/min 
for the RF classifier represents a substantial 
communication throughput for a non-invasive, real-time 
SSVEP-BCI system. In the context of drone navigation, 
this ITR allows for six distinct commands to be reliably 
issued in rapid succession, enabling responsive, multi-
directional control. While it may not yet match the 
precision of conventional interfaces such as manual 
joysticks or gaze-based systems (which benefit from 
near-instantaneous input latency and virtually zero 
classification delay), the current ITR is sufficient for 
semi-autonomous navigation scenarios, waypoint 
setting, or discrete directional commands. Notably, the 
system’s ITR is achieved with minimal user training and 
low cognitive demand, owing to the passive nature of 
SSVEP, making it suitable for users with limited motor 
control or high fatigue susceptibility. Compared to 
hybrid BCI paradigms or asynchronous control 
methods, the proposed system strikes a viable balance 
between speed, accuracy, and usability, especially in 
constrained environments or assistive technology 
settings.  

Additionally, a correlation analysis was conducted 
to confirm the reliability of neural feature extraction, 
following established CCA-based SSVEP 
methodologies [16]. The results showed that the 
projected outputs and target signals were quite similar, 
which showed that the RF-based classification pipeline 
was robust. All of these data show that RF not only 
performs well statistically but also strikes the optimal 
balance among speed, accuracy, and neural 
correlation. This makes it the best model for real-time 
SSVEP-based BCI devices. 

E. Confusion Matrix Analysis  
To enhance the characterisation of classifier reliability, 
Fig. 1 presents the normalised confusion matrices for 
each model. The RF classifier demonstrates distinct, 
well-defined decision boundaries, with predictions 
strongly aligned along the diagonal, indicating 
consistent recognition across all six navigation 
commands. The RF classifier achieved a macro 
average classification accuracy of 87.24%, with 
individual class accuracies as follows: land (87.89%), 
left (87.75%), right (87.34%), backward (86.93%), 

Table 4. Classification and latency (mean ± SD) 
across 30 participants. 

Model 
Accuracy 
(%) 

Macro-F1 
ITR 
(bits/min) 

Latency 
(s) 

SVM 
18.52 ± 
1.4 

0.152 ± 
0.049 

0.04 ± 0.1 
4.92 ± 
1.13 

RF 
87.24 ± 
4.8 

0.872 ± 
0.048 

35.0 ± 4.6 
0.09 ± 
0.03 

ANN 
27.14 ± 
1.5 

0.271 ± 
0.016 

1.0 ± 0.3 
0.12 ± 
0.05 

 

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:e@poltekkesdepkes-sby.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.295
https://creativecommons.org/licenses/by-sa/4.0/


 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics 
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 17-30, February 2026 

e-ISSN: 2656-8624 

 

 

Corresponding author: Anderias Eko Wijaya, ekowjy09@universitasmandiri.ac.id, Department of Informatics Engineering, Faculty of 
Engineering, Universitas Mandiri, Subang, Indonesia. 
DOI: https://doi.org/10.35882/ijeeemi.v8i1.295 
Copyright © 2026 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This 
work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).  

 23               

forward (86.77%), and takeoff (86.78%). This 
performance distribution reflects robust and equitable 
classification capability across all command types. The 
confusion pattern reveals that most misclassifications 
were minor, with error rates below 3.0%. The most 
frequent confusions occurred between takeoff and land 
(2.95%), backwards and right (2.95%), and forward and 
land (2.97%). These minimal misclassifications 
suggest that the RF classifier effectively captures the 
discriminative frequency phase characteristics of 
SSVEP responses. In contrast, the ANN confusion 
matrix shows substantial misclassification across 
classes, with pronounced overlap between adjacent 
command pairs (particularly between forward-left and 
backwards-right). This pattern explains its suboptimal 
information transfer rate despite lower computational 
latency; the model generates rapid but unreliable 
predictions. Similarly, the SVM displays extensively 
scattered predictions without clear diagonal 
dominance, indicating inadequate discrimination of 
SSVEP response patterns.  

Collectively, the summary metrics in Tables 2-4 and 
the detailed error patterns in Fig. 1 confirm that RF 

provides the most favourable balance among accuracy, 
computational efficiency, and operational robustness. 
This establishes RF as the most suitable classifier for 
real-time SSVEP-based BCI navigation tasks, 
outperforming both SVM and ANN in both aggregate 
performance and class-specific stability. RF was more 
efficient, with an average ITR of 35.0 bits/min, far better 
than that of ANN and SVM. Even while ANN had very 
low latency, its poor accuracy led to unpredictable ITR 
performance, showing that high speed alone does not 
guarantee good communication in BCI applications. 
Additionally, a correlation analysis was conducted to 
confirm the reliability of neural feature extraction, 
following established CCA-based SSVEP 
methodologies [3]. Correlation analysis between the 
extracted SSVEP features and the reference templates 
yielded high correlation coefficients (mean ρ > 0.6, p < 
0.001), confirming the effective capture of neural 
responses. All of these data show that RF not only 
performs well statistically but also strikes an optimal 
balance between speed, accuracy, and neural 
correlation. This makes it the best model for real-time 
SSVEP-based BCI devices.  

 
Fig. 1. Normalized confusion matrix for the RF classifier 
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F. Error Analysis of the RF Classifier 
A comprehensive error analysis was performed on Fig. 
2 and Fig. 3 to assess the reliability of the RF classifier 
further. Error analysis confirmed the robustness of the 
RF classifier. As shown in Fig. 2, misclassifications 
were not random. Still, they were concentrated in 
specific command pairs, most notably between takeoff 
→ land and backward → right, each contributing to less 
than 3% of total errors. These confusions likely stem 
from the perceptual similarity of flickering frequencies 
(e.g., 11.25 Hz vs. 12.0 Hz) and the spatial proximity of 
stimulus regions on the interface, leading to 
overlapping neural responses in the visual cortex. Fig. 
3 further supports this observation, showing a class-
wise error distribution with minimal variance (range: 
12.1-13.2%; CoV: 3.6%), suggesting that no single 
command dominated the misclassification profile. This 
balanced error pattern implies that the classifier did not 
exhibit systematic bias toward any particular class, an 
essential requirement for safe and responsive BCI-
based drone control systems. To reduce such inter-
class ambiguities, future iterations of the system could 
benefit from (1) increasing the angular distance 
between frequently confused stimuli to reduce saccadic 
overlap. (2) Widening frequency gaps to avoid 
harmonic interference. (3) Exploring hybrid modulation 
techniques (e.g., frequency + phase or colour) to 
enhance class separability. Collectively, these findings 

strengthen the evidence that Random Forest 
classifiers, when properly tuned, can maintain stable 
and equitable classification performance across 
multiple commands, which is crucial for real-time 
navigation applications.  

IV. Discussion 
The RF classifier demonstrated superior performance 
for multi-class SSVEP classification with consumer-
grade EEG data. Its ensemble architecture effectively 
captured complex, nonlinear interactions while 
mitigating overfitting, leading to balanced, high 
accuracy across all commands (Macro F1 ≈ 0.87). In 
contrast, the SVM with a radial basis function (RBF) 
kernel failed to generalise, performing barely above 
chance. This is likely due to the inherent difficulty that 
margin-based classifiers face in modelling the     non 
linear dynamics of SSVEP responses. This challenge 
is magnified in a high-dimensional, multi-class setting. 
The ANN classifier outperformed SVM but remained 
considerably inferior to RF. Its suboptimal accuracy 
suggests that the shallow feedforward structure was 
inadequate for learning meaningful spatiotemporal 
features, and likely overfitted due to the limited training 
data. However, its low computational latency highlights 
the efficiency advantage of neural models. On the other 
hand, the SVM performed close to chance level, which 
may reflect the difficulty of margin-based methods in 

 
Fig. 2. Top misclassifications by absolute count 
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modelling the narrow-band, nonlinear, and multi-class 
characteristics of SSVEP signals. 

 

 
 

Despite these limitations, both models may remain 
relevant in lightweight or low-resource applications 
where rapid deployment or binary classification is 
prioritised. Future work may explore deeper 
architectures such as CNNs or RNNs, or hybrid 
ensemble deep learning methods, to improve 
robustness while maintaining real-time feasibility.  

To contextualise these findings, we compared our 
results with several previous SSVEP-BCI studies using 
similar hardware. Martišius and Damaševičius [32] 
used SVM with an Emotiv EPOC+ and reported 80.5% 
accuracy. Asanza et al. [33] applied XGBoost to the 
same headset, achieving 57%. Kołodziej et al. [34] 
used a CNN and reached 72% accuracy, while Wang 
et al. [35] employed an attention-guided ANN yielding 
85.49%. Our RF model exceeded these benchmarks 
with an accuracy of 87.24%, demonstrating that 
classical ensemble learning remains highly competitive 
even compared to more complex deep learning 
solutions, especially when latency, training data 
constraints, and computational cost are considered.  
A. System Performance and Classifier Evaluation 
The integrated system, combining the consumer-grade 
EEG headset with the optimised processing pipeline 

and RF classifier, successfully enabled real-time drone 
control with six commands. It achieved a high intra-
subject accuracy of 87.24 ± 4.8% with a 1.0s decision 
window and 0.09s computational latency (1.09s total 
decoding time), well within the 2s responsiveness 
threshold for practical use. Based on an effective 
command cycle of approximately 3.0 s, this 
corresponds to an information transfer rate (ITR) of 
35.0 bit/min. The choice of a 1-3s jittered inter-trial 
interval underlying this command cycle represents a 
deliberate compromise between communication 
throughput and user comfort, as the shorter average 
cycle elevates ITR. In contrast, temporal jitter mitigates 
habituation and better approximates naturalistic control 
demands. This competitive performance, especially 
given the affordable hardware, stems from key design 
choices: (i) frequency selection within the low-
alpha/beta range to maximise SSVEP response and 
minimise harmonics [36] (ii) a hybrid feature set (CCA, 
spectral power, SNR) for robustness without high 
computational cost  [13];  and (iii) a 1s analysis window 
with 50% overlap to balance speed and stability. 
However, two significant limitations persist for real-
world applications: reliance on a single modality 

 
Fig. 3. Class-wise error rates distribution 
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(SSVEP) and the need for subject specificcalibration. 
These make the system susceptible to visual 
fatigue/attentional lapses, hindering rapid deployment. 
Future work should therefore explore hybrid BCI 
paradigms (e.g., combining SSVEP with motor imagery 
or P300) to distribute cognitive load and improve 
overall robustness [11][12][37][38]. 

A primary limitation of this study is that validation 
was conducted under controlled laboratory conditions, 
which do not fully capture the complexities of real-world 
environments. In practice, factors such as ambient 
lighting variability, visual distractions, and 
electromagnetic interference may compromise signal 
quality, particularly when using consumer-grade EEG 
headsets with limited shielding and dry electrodes 
[5][6]. Additionally, user-related issues, such as 
sustained visual fatigue during prolonged SSVEP 
interactions and attention drift, can significantly affect 
the amplitude and consistency of evoked responses, 
thereby reducing classification accuracy and 
increasing latency [22]. Another practical limitation is 
the need for subject specificcalibration, which, although 
brief (typically 3-5 minutes), may affect scalability and 
user experience, especially in mobile or time-sensitive 
applications. While the current setup requires 
individualised training to elicit optimal SSVEP 
responses, future work will explore calibration 
minimisation strategies, including transfer learning, 
domain adaptation, and pooled subject-independent 
models. Furthermore, hybrid BCI paradigms (e.g., 
SSVEP + eye tracking or motor imagery) and adaptive 
interfaces may offer resilience against non-stationarity 
and enable more robust deployment in naturalistic 
settings [12][37][39].  
B. Clinical Implications and Therapeutic 

Applications  
This low-cost SSVEP-BCI system demonstrates strong 
potential for clinical neurorehabilitation and assistive 
technologies. With a classification accuracy of 87.24% 
and a total decoding latency of approximately 1.09s, 
the system meets real-time usability thresholds, 
making it suitable for hands-free operation of assistive 
devices such as brain-controlled wheelchairs, 
prosthetic arms, or smart home interfaces. Each of the 
six available commands may be assigned to directional 
navigation or functional control, enabling individuals 
with severe motor impairments, such as those with ALS 
or spinal cord injuries, to interact with their environment 
non-invasively [40][41][42]. 

Unlike conventional control interfaces that rely on 
fine motor dexterity (e.g., joysticks) or dedicated eye 
tracking hardware (e.g., gaze-based systems), the 
proposed SSVEP-BCI operates through passive visual 
attention to flickering targets without requiring precise 
muscular control, imposing minimal physical or 

cognitive demands on the user. This makes it 
particularly valuable for patients with fatigue 
susceptibility, attention drift, or ocular impairments. 
Furthermore, its use of consumer-grade EEG and 
compact software architecture allows for low-cost 
deployment in home-based therapy or resource-
constrained clinics, broadening its accessibility and 
impact [5][22]. In neurorehabilitation contexts, 
repetitive engagement with SSVEP tasks can promote 
functional reorganisation and improve visuomotor 
attention, for instance, Chang et al. [43] showed that 
visual attention feedback through EEG can reinforce 
motor pathways, while Shen et al [22] demonstrated 
the feasibility of hybrid BCI rehabilitation systems 
combining SSVEP with electromyographic feedback 
for upper limb recovery. Beyond assistive control, the 
proposed system may serve as a dual-purpose 
platform for both interaction and therapeutic training, 
with high translational potential for personalised BCI 
interventions. 
C. Cross-Subject Generalizability Analysis 
While this study focused on intra-subject performance, 
cross-subject generalizability remains a significant 
obstacle to the practical deployment of BCI. Inter-
subject variability in SSVEP responses, attributable to 
anatomical differences, attentional states, and fatigue, 
often results in a performance degradation of 7-20% for 
non-personalised models [44][29]. This issue is further 
exacerbated by the lower signal consistency inherent 
in consumer-grade EEG devices [5][6]. Consequently, 
addressing the generalisation challenge is a critical 
direction for future work. Promising strategies to 
enhance cross-subject robustness include leveraging 
domain adaptation and transfer learning techniques to 
fine-tune pre-trained models for new users with minimal 
calibration data. [28][30]; developing advanced 
subject-independent feature normalisation methods to 
mitigate inherent physiological baseline differences 
between users [9]; and implementing adaptive 
calibration protocols that facilitate continuous model 
updates during real-time operation, allowing the system 
to dynamically adjust to a user’s unique and evolving 
brain signal characteristics [13]. Ultimately, overcoming 
the generalisation hurdle is paramount to translating 
SSVEP-BCI from controlled laboratory demonstrations 
into reliable, practical, real-world applications. 

V. Conclusion 
This study successfully demonstrated the feasibility of 
a six-command SSVEP-BCI using consumer-grade 
EEG equipment that is capable of real-time operation 
for drone command decoding. Among the three 
classifiers evaluated, the RF algorithm was identified 
as the most robust and practical choice. It achieved an 
optimal balance between high classification accuracy 
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(87.24 ± 4.8%) and a low total decoding time of 
approximately 1.09s (comprising a 1s decision window 
and 0.09s computational latency), thereby satisfying 
the commonly cited 2s responsiveness requirement for 
practical BCI use. When the full command cycle of 
approximately 3.0s is taken into account, this 
corresponds to an information transfer rate (ITR) of 
35.0 bit/min. The superiority of RF was further 
confirmed by its lowest multi-objective cost value (f(x) 
= 0.094) compared with SVM and ANN. In contrast, the 
ANN showed that an intermediate cost value (f(x) = 
0.461) was insufficient to compensate for its poor 
discriminative capability (27.14 ± 1.5% accuracy). The 
SVM performed the worst, yielding the highest cost (f(x) 
= 1.474) due to its very low accuracy (18.52 ± 1.4%) 
and excessively high latency (4.92s), rendering it 
impractical for real-time use. Future work will focus on 
three concrete directions to enhance real-world 
applicability. First, the system will be tested in dynamic, 
outdoor environments to evaluate its resilience to visual 
noise, lighting variations, and motion artefacts. Second, 
adaptive learning techniques such as transfer learning 
or subject independent models will be explored to 
minimise calibration time and improve cross-user 
generalisation. Third, we plan to integrate multimodal 
inputs such as EOG and EMG into the BCI pipeline, 
building on recent hybrid BCI systems that combine 
EEG with ocular and muscular biosignals to improve 
robustness, command reliability, and control bandwidth 
in assistive and rehabilitation settings [47][48][49]. 
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