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Abstract

Accurate and reliable classification of autism spectrum disorder (ASD) from
electroencephalography (EEG) signals remains challenging due to the inherently
nonstationary, nonlinear, and multichannel nature of EEG data. These properties
complicate the extraction of discriminative features that are both stable and
computationally efficient. To address this challenge, this study proposes a compact
deep-learning pipeline that integrates the Multivariate Empirical Wavelet Transform
(MEWT) with EEGNet for ASD-EEG classification. MEWT decomposes multichannel
EEG signals into spectrally aligned subbands while preserving inter-channel
relationships. The resulting MEWT-based features are then processed by EEGNet, a
lightweight convolutional neural network specifically designed for EEG-based
learning tasks. Performance was evaluated using 5-fold cross-validation. The
proposed MEWT with the the EEGNet model achieved a mean test accuracy of
98.35%, with consistently high precision (98.23%), recall (98.45%), F1-score (98.34%),
and specificity (98.24%) across all folds. Confusion-matrix results indicated very few
and well-balanced false positives and false negatives, supporting stable
discrimination between ASD and control EEG segments. A one-sample one-tailed t-
test against a 50% chance level confirmed that all evaluated metrics were
significantly above chance (p < 0.0001). When benchmarked against previously
reported results on the same dataset, the proposed approach slightly improved upon
EMD with EEGNet (97.99%) and clearly outperformed EWT with EEGNet (95.08%),
suggesting that MEWT-derived multichannel features are well matched to compact
convolutional architectures for ASD-EEG analysis. Despite these strong results, the
study is limited by a small, single-site cohort and the use of a single deep-learning
model. Future work will focus on standardized retraining across multiple feature
families and validation on larger and more diverse populations to further assess
robustness and generalizability.
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Disorders in individuals with ASD are related to changes
in the function of the frontal and temporal lobes. In
general, increased brain wave activity in the delta to theta
frequency band is observed in the frontal area, which is
associated with lower cognitive performance [1]. In
individuals with ASD, alpha wave activity, commonly
associated with relaxation, tends to be lower, while beta
wave activity, associated with focus and attention, tends
to be higher. This oscillation pattern suggests that brain
wave dynamics may play a role in the developmental
mechanisms of ASD [2]. Recent reviews and meta-
analyses suggest that ASD-related EEG findings are
heterogeneous, encompassing band-specific power
alterations in delta, theta, alpha, and beta ranges, atypical
functional connectivity patterns, and changes in signal
complexity. Reported effects also appear to be moderated
by factors such as age, behavioral state during recording,
and acquisition protocols. Collectively, these observations

motivate feature representations that are physiologically
interpretable in the spectral domain while remaining
robust to cross-channel variability and protocol-related
differences [3],[4].

Brain activity can be studied through functional
imaging, which measures brain signals using EEG
(Electroencephalography)[5]. EEG is a method for
recording the brain's spontaneous electrical activity,
arising from the transmission of signals between neurons.
Recording is generally performed for short durations,
around 20-40 minutes, by placing electrodes at several
points on the scalp [6]. EEG signals require feature
extraction to convert raw signals into meaningful
indicators of information. These features enable analysis
and classification in various applications, such as emotion
recognition, BCI, seizure detection, and ASD identification
[7]. The feature extraction process generally includes
preprocessing, decomposition, and then the extraction of
relevant features from the processed signal. Various

Corresponding author: Melinda, melinda@usk.ac.id, Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh,

Indonesia.

Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.313

Copyright © 2026 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

56


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:melinda@usk.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.313
https://creativecommons.org/licenses/by-sa/4.0/
mailto:imamfr@mhs.usk.ac.id
mailto:melinda@usk.ac.id
mailto:yunidar@usk.ac.id
mailto:nurlida@usim.edu.my
mailto:aufa35@mhs.usk.ac.id
https://orcid.org/0009-0008-8068-994X
https://orcid.org/0000-0001-9082-6639
https://orcid.org/0009-0008-4453-9215
https://orcid.org/0000-0003-4738-1763
https://orcid.org/0009-0008-3031-8008

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 56-69, February 2026

approaches can be used, such as statistical measures,
time—frequency analysis, and advanced decomposition
techniques such as Multivariate Empirical Wavelet
Transform (MEWT) [8].

On the same dataset, a prior study used the Empirical
Wavelet Transform (EWT) with EEGNet to classify ASD
vs. non-ASD subjects, achieving an average test
accuracy of 95.08% [9]. Nevertheless, EWT was applied
univariately (per channel), meaning that frequency-band
boundaries could differ across channels; consequently,
cross-channel  consistency and  synchronization
information may not be optimally preserved. Motivated by
this limitation, this work replaces EWT with MEWT while
retaining EEGNet as the classifier, aiming to produce
time—frequency representations that are more consistent
across channels for ASD detection [9]. MEWT
decomposes multichannel signals into a set of
multivariate wavelet coefficients that capture time and
frequency information simultaneously across all channels
[10]. Unlike univariate decompositions, MEWT jointly
determines band boundaries across channels, so that
each channel is analyzed under an identical frequency
partition. This property is particularly relevant for EEG,
where synchronous patterns across channels may carry
discriminative information; therefore, MEWT is expected
to improve the stability and reliability of extracted time-
frequency features in multichannel ASD EEG analysis
[11]. MEWT extends univariate EWT by deriving a single,
data-driven empirical wavelet filter bank from a
representative multichannel spectrum and applying it
uniformly  across channels, thereby promoting
multichannel-consistent, spectrally aligned sub-bands.
EEGNet complements this representation through
temporal convolutions that learn local time patterns and
depthwise spatial convolutions that model inter-channel
coordination with very few trainable parameters, making it
suitable for compact, screening-oriented EEG pipelines
[12], [13]

The next step is classification modeling to map MEWT
vectors to ASD and normal labels. This study selected one
deep learning model paradigm, namely, EEGNet [14].
EEGNet is selected for three main reasons: (i) it is
effective for modeling nonlinear and noisy EEG
characteristics, (ii) it is computationally efficient for
controlled training and validation, and (iii) it has
demonstrated strong performance across diverse EEG
tasks when evaluated under proper validation protocols
[12]. Architecturally, EEGNet captures temporal patterns
via temporal convolutions, models inter-channel
coordination through depthwise spatial convolutions, and

reduces parameter complexity using separable
convolutions without substantially sacrificing
representational capacity[13]. Accordingly, this work

evaluates performance using Accuracy, Precision, Recall,
F1-score, and Specificity, complemented by inferential
assessment. Based on this background, the objectives of
this study are to: (i) evaluate the ability of MEWT to
generate stable and consistent time—frequency features
across channels in a multichannel ASD EEG dataset, and
(i) assess the performance of the MEWT-EEGNet

combination in distinguishing ASD and non-ASD subjects
at the subject level using rigorous subject-wise validation.

The contributions of this study are as follows: 1) We
propose an ASD EEG classification pipeline that replaces
univariate EWT with multichannel-consistent MEWT to
improve cross-channel alignment of time—frequency
representations, 2) We integrate MEWT features with
EEGNet to simultaneously model temporal and spatial
EEG patterns using a compact and computationally
efficient CNN architecture, 3) We provide a subject-wise
K-fold evaluation protocol to prevent intra-subject leakage
and report comprehensive metrics (Accuracy, Precision,
Recall, F1-score, and Specificity) to characterize
performance robustness across individuals.

This paper is organized as follows: This paper is
organized as follows: Section | introduces the research
background, problem formulation, and main contributions
of this study. Section Il reviews the materials and
methodological background, including EEG
preprocessing, MEWT, and EEGNet. Section Il describes
the results. Section IV presents the experimental results
and discusses the comparative findings. Finally, Section
V concludes the paper and outlines future work.

Il. Materials and Method

Fig. 1 summarizes the workflow of this study. The data
come from the Primer EEG dataset, consisting of 10
subjects (5 with ASD, 5 controls) recorded with 16
channels at a sampling frequency of 250 Hz. Raw EEG
signals were visually checked, then preprocessed using a
zero-phase 0.5-40 Hz Butterworth band-pass filter, and
segmented into fixed-length epochs that served as
individual samples. For feature extraction, the
preprocessed multichannel EEG was decomposed using
Multivariate Empirical Wavelet Transform (MEWT). A
representative multichannel spectrum was used to design
a common empirical wavelet filter bank, ensuring
consistent frequency bands for all channels. The resulting
MEWT filter bank was applied uniformly to each channel
to obtain spectrally aligned sub-bands; these sub-bands
were then summed to reconstruct a denoised
multichannel signal per subject. The denoised EEG was
segmented into fixed-length epochs and used as input to
EEGNet for end-to-end classification. Performance was
reported with subject-wise 5-fold cross-validation and
fold-level metrics (Accuracy, Precision, Recall, F1-score,
and Specificity).

All data were split into 80% training and 20% test data
under a subject-wise 5-fold cross-validation scheme, so
that epochs from the same subject did not appear in both
training and test sets within a fold. The classification stage
used EEGNet with the Adamax optimizer, a learning rate
of 0.001, a batch size of 64, 50 training epochs, and binary
cross-entropy loss. For each fold, the model was trained
on the training set and evaluated on the test set.
Performance was assessed using learning curves
(training/validation accuracy and loss), the confusion
matrix (TP, FP, FN, TN), and the metrics Accuracy,
Precision, Recall, F1-score, and Specificity across folds.
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Fig. 1. Block diagram of preprocessing, MEWT feature extraction, and EEGNet classification

A. Dataset

The materials required for this study were EEG signal
datasets, consisting of raw EEG data from individuals with
ASD and from normal individuals, acquired directly from
subjects using the Open BCI Cyton Board. EEG data were
collected from ten participants in Banda Aceh, Indonesia,
who were divided into two groups. The first group
consisted of five adolescents and young adults aged 15
to 25 years with Autism Spectrum Disorder (ASD)
recruited from local special schools, while the second
group consisted of five neurotypical individuals aged 17 to
25 years living around Syiah Kuala University. Data
collection was conducted in a quiet and controlled room
between 9:00 a.m. and 12:00 p.m. to keep participants
calm and cooperative. Each session lasted approximately
40 minutes, including 10 minutes for preparation and
electrode placement, and two 15-minute recording
sessions [15]. All research procedures have been
approved by the Ethics Committee with reference number
117/EA/FK/2024 and are declared to be in accordance
with the WHO 2011 standards. The dataset used in this
study involves 16 channels, which represent the location
of electrode placement on the scalp during the EEG signal
acquisition process. The electrode placement consisted
of the Frontal (front of the brain) section, which included
channels Fp1, Fp2, F7, F3, Fz, F4, and F8. The Temporal
(middle side) section included channels T3 and T5. The
Central (top center) section included channels C3, C4,
and Cz. Finally, the Parietal (upper back) and Occipital
(lower back) sections include channels Pz, O1, and Oz
[16].

B. Butterworth Band Pass Filter

A Butterworth band-pass filter is a filter with a flat
maximum magnitude response in the passband, so that
the signal amplitude within a certain frequency range

remains flat [17]. This filter is formed from a combination
of high-pass and low-pass filters, so that only frequencies
between the two cut-off frequencies are passed, while
frequencies outside that range are attenuated [18]. lts
characteristics are that the amplitude is very flat in the
band-pass, but the phase response is not linear, so the
phase change depends on the signal frequency [17]. In
this study, EEG recordings were acquired at a sampling
rate of 250 Hz, and all 16 available channels were
included in the analysis. During preprocessing, each
channel was passed through a 4th-order Butterworth
band-pass filter with cut-off frequencies of 0.5 and 40 Hz.
This type of filter was chosen because its maximally flat
passband magnitude helps maintain the original
waveform with minimal distortion [19]. The 0.5-40 Hz
range spans the principal EEG rhythms delta, theta,
alpha, beta, and part of the low-gamma band while
simultaneously suppressing very slow components
caused by drift and body movements, as well as higher-
frequency disturbances from muscle activity and
environmental noise. These settings were tailored to the
spectral characteristics of EEG signals, ensuring that
subsequent feature extraction and classification
stageoperate on clean, informative signals. Similar pass-
band choices (0.5-40 Hz) are widely used to mitigate drift
and EMG contamination and to stabilize downstream
decoding performance across preprocessing settings.
[20], [21].

After preprocessing, each subject’s continuous EEG
was segmented into fixed-length epochs of 2 s (500
samples at 250 Hz) with 50% overlap. A 2-s epoch is a
practical trade-off: it is short enough to approximate local
stationarity and increase the number of training samples,
yet long enough to preserve the oscillatory dynamics
commonly reported in ASD EEG studies. A 50% overlap
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improves temporal coverage while limiting redundancy
relative to higher-overlap settings [22], [23]. Because
overlapping epochs from the same subject are highly
correlated, we used subject-wise cross-validation to
prevent identity confounding and data leakage when
forming train and test splits [24], [25].

C. Multivariate Empirical Wavelet Transform

The Multivariate Empirical Wavelet Transform (MEWT) is
a multichannel generalization of the Empirical Wavelet
Transform (EWT) that decomposes multivariate signals
using a single, data-driven set of frequency boundaries
shared across channels. Unlike univariate EWT, which
estimates spectral boundaries independently for each
channel, MEWT first analyzes the joint multichannel
Fourier spectrum of an EEG trial to identify salient spectral
transitions and define a common partition of the frequency
axis [26], [11]. These empirically determined band limits
are computed once per trial (or per dataset, depending on
the implementation) and then used to construct an
adaptive wavelet filter bank, which is applied identically to
every channel. As a result, the extracted sub-bands are
spectrally co-registered across electrodes, facilitating
direct cross-channel comparison and stabilizing
multichannel learning, while preserving the smooth, tight-

frame reconstruction properties and adaptivity that

characterize EWT [27],[28],[29].

1. Fourier Transform &  Multichannel  Spectral
Aggregation

The first step is to transform the EEG signal into the
frequency domain. For each EEG channel x.(t), with ¢ =
1, ...,C,) the Fast Fourier Transform (FFT) is calculated in
Eq. (1) [30]:

Xc(w) = Fx (1) (1)
The spectrum X,(w) describes how the energy of the
channel c is distributed at a frequency w. o obtain a
combined spectral representation of all channels, a
composite spectrum S(w) is formed using two commonly
used forms, Eq. (2) [29] and Eq. (3) [29]:
(i) Average spectral magnitude

c

_ 1 —
§(@) =2 ) %) @)
c=1
(i) Spectral root-sum-of-squares (energy)
1/2

c
S(w) = <Z|)Tc(w)|2> (3)
c=1

The combined spectrum S(w) is then smoothed to
stabilize peak and valley detection. The frequency domain
[0, wnyq] is then segmented into K bands with boundaries
Q = {w,, ..., wg} obtained through local peak searches on
S(w) nd boundary placement at the midpoint between
peaks. This mechanism underlies the adaptive nature of
MEWT compared to non-adaptive wavelet systems
[28],[29]. In this study, we constructed the representative
multichannel spectrum using the spectral root-sum-of-

squares formulation (Eq. (3)) [29], which emphasizes
shared spectral peaks across channels and has been
adopted in multidimensional empirical wavelet transform
implementations for multichannel EEG.

2. Meyer-like Window Construction (Scaling & Wavelet)

After the band limits are determined, a scaling function
and wavelet function (Meyer-like windows) are
constructed in the frequency domain (Eq. (4)) [29]. The
scaling §,(w) covers low frequencies, while the wavelet
P (w) is active in the range [wy, wy41] With smooth edges
(roll-off).

{Po(@), Pr(@)}i=1 (4)

Smooth transitions between bands ensure that the filter
bank does not abruptly cut off the spectrum, but
ratherinstead forms a stable, redundant empirical wavelet
frame. Because the shapes of @,(w)and ¥, (w) follow
the spectrum structure S(w) obtained from the data, this
filter bank is empirical and adaptive, unlike conventional
wavelets that depend on predefined scale and translation
parameters [29],[31].

3. Cross-Channel Uniform Subband Projection

The bank filter formed is then applied uniformly to each
EEG channel, so that each channel has a subband with
identical frequency limits. The projection for channel -c is
given by Eq. (5) [32]:

xe0(t) = F @5 (w) Xo(w)
Xk () = F 1 (w) Xo(w), k=1,..,K

This decomposition produces a set of subband signals for
each channel with a consistent band structure across
channels. This configuration allows features such as
energy, spectral entropy, and center frequency (centroid)
to be calculated for each subband and directly compared
across channels and subjects in the same frequency
domain [29], [32].

D. EEGNet

EEGNet is a compact CNN designed for EEG
classification that organizes feature learning into three
core stages Fig. 2: temporal filtering, spatial filtering per
temporal feature (capturing inter-channel relationships),
and efficient feature fusion via separable convolution [9],
[12], [14], [33]. Mathematically, the first stage applies a
time-domain convolution to each channel to produce
temporal feature maps (Eq. (6)) [12]:

()

L
Zf(c,t)=ZWfle) X(c,t+1—1)+b, (6)
=1
In Eq. (6) [12], where X(c,t)denotes the EEG sample
from channel cat time t, Lis the temporal kernel length,
W Ware the kernel weights, and byis the bias term [34].
Next, DepthwiseConv2D acts as a spatial filter that

aggregates information across channels for each
temporal feature map separately:
C
B = > w2 70 (7)

c=1
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In Eq. (7) [12], where Cis the number of channels and
W®@are the spatial-filter weights [12].  Finally,
SeparableConv2D compresses and combines the
resulting feature maps into a more compact
representation by merging information across features
(Eq. (8)) [12I:

F
Ue(®) = ) WS (0) + b ®)
=1

In Eq. (8) [12], where W ®are the fusion weights, byis
the bias, and k indexes the final filters. The resulting
features are then passed to a pooling and a classification
layer to produce the final decision [9]. EEGNet
configuration used in this study follows a compact
EEGNet-style design. We employed three successive
convolutional stages with 8, 4, and 2 filters and kernel
sizes of 1 x 32, 2 x 16, and 8 x 4, respectively. Each stage
was followed by ELU activation and batch normalization.
Temporal downsampling was performed using max-
pooling with a pool size of 1 x 4 after the second and third
stages, while zero-padding along the time dimension was
applied to maintain adequate temporal coverage.

The resulting feature maps were flattened and passed
to a single fully connected neuron with a sigmoid
activation to produce a binary output. Training in each fold
was conducted for up to 50 epochs using the Adamax
optimizer and binary cross-entropy loss. The
compactness of EEGNet (0,001 trainable parameters in
common configurations) has been widely reported,
supporting its  suitability for resource-constrained
deployment [12]

E. K-Fold Cross Validation

K-Fold cross-validation is one of the most commonly used
cross-validation techniques in machine learning to
measure overall model performance. This method works
by dividing the dataset into k subsets or folds of similar
size; then the model is trained on k -1 folds and tested on
the remaining fold. This process is repeated k times, so
that all data is used in turn for training and testing. The
average value of all test results is then used as an
indicator of the overall performance of the model [35],
[36]. Mathematically, if D = {(x;,y;)}/=, is a dataset with n
samples, and D; s the jth subset of k -fold, then the
average accuracy can be expressed as Eq. (9) [35]:

k
1 :
Accuracy,yg = EZ Accuracy (M™/, D)), (9)
=1

In Eq. (9) [35], where M~/ is the model trained on all data
except fold -j, and D; is the validation data. Recent studies
show that the use of K-Fold Cross-Validation can reduce
the risk of overfitting and improve the stability of
generalization for EEG signal classification models [35],
[36], [37]. In this work, we implemented a subject-wise 5-
fold cross-validation scheme: the 10 subjects (5 ASD, 5
control) were partitioned into five folds, with each fold
holding out 2 subjects (1 ASD and 1 control),
corresponding to approximately 20% of the subjects for
testing, while the remaining 8 subjects (80%) were used
for training. All epochs generated from a held-out subject
were kept exclusively in the test set for that fold. This
design is recommended for EEG deep learning studies
because random segment-level splits can substantially

8 filters
1x32 temporal kernel, ELU
Batch Normalization

DepthwiseConv2D
 4filters

2x16 temporal kernel, ELU
Batch Normalization

>

i

2 filters
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Batch Normalization
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Neuron

Binary
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Fig. 2. Schematic diagram of the EEGNet model for EEG signal classification
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Fig. 3. Time domain MEWT visualization: (a) raw EEG signal, band-pass filtered signal ASD, and MEWT-
reconstructed signal, (b) five ASD MEWT sub-band, (c) raw EEG signal, band-pass filtered signal NORMAL,
and MEWT-reconstructed signal, (d) five NORMAL MEWT sub-band

overestimate performance when subject identity leaks
across folds. [24], [25]. A confusion matrix is used to
evaluate the performance of machine learning and deep
learning models by displaying a summary of prediction
results in matrix form, enabling evaluation metrics such as
accuracy, precision, recall, and specificity to be calculated
systematically [38],[39]. A confusion matrix generally
consists of four components, namely TP (true positive),
FP (false positive), TN (true negative), and FN (false
negative) [40].

1l. Results
A. Butterworth Band Pass

In the first preprocessing step, the EEG is restricted to the
conventional analysis band using a Butterworth band-
pass filter with cut-off frequencies of 0,540 Hz (middle
panel, orange trace). The upper panel of Fig.3 displays
the raw Channel-4 (C3) recording (red), which still
contains large, slow drifts and sporadic high-amplitude
spikes, with values ranging roughly from -100 to 200 pV.
These fluctuations reflect a mixture of ocular, movement,
and environmental artifacts that mask the underlying
cortical rhythms and yield a highly unstable baseline. After

applying the 4—40 Hz Butterworth filter, the waveform in
the middle panel becomes more compact and regular,
with amplitudes confined to about -80 to 80 pV. Low-
frequency baseline wander and very high-frequency noise
are strongly attenuated, while oscillatory activity in the
classical EEG bands is preserved. Because the
Butterworth filter has a maximally flat magnitude response
in the passband, it suppresses out-of-band components
without introducing ripples, thereby maintaining the
essential temporal structure required for subsequent
multichannel processing

B. MEWT

The bottom panel of Fig. 3 (a) shows the same channel
after Multivariate Empirical Wavelet Transform (MEWT)
decomposition and reconstruction (blue trace). Following
the decomposition stage, the five resulting components
are recombined by time-domain aggregation to form a
reconstructed signal for each channel. When minor length
mismatches arise from padding operations or rounding in
index computations, a one-dimensional linear
interpolation step is used to resample the reconstruction
to match the original signal duration. This reconstruction
procedure further suppresses remaining ocular and EMG-
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related artifacts beyond what band-pass filtering alone
can remove, while maintaining the essential waveform
structure prior to classification.

MEWT is applied jointly to all EEG channels. The
combined multichannel spectrum of each trial is used to
derive adaptive frequency boundaries that define five
non-overlapping sub-bands associated with delta, theta,
alpha, beta, and gamma activity. The same empirically
derived wavelet filter bank is then applied to every
channel, ensuring that sub-band contents are aligned
across the 16 electrodes. For the ASD example in
Channel 4 shown in Fig. 3(a), the raw EEG is plotted over
approximately -200 to 200 pV, the Butterworth band-
pass-filtered signal is shown over approximately =100 to
100 pV, and the MEWT-reconstructed signal is further
compressed to approximately -80 to 60 uV. The
reconstructed waveform becomes more regular and
clearly oscillatory than the band-pass-only output,
indicating an improved signal-to-noise ratio. Slow drifts
and sharp muscle-related transients that survive
conventional band-pass filtering are largely reduced,
while the morphology of the underlying cortical rhythms is
preserved. The MEWT-reconstructed signals, therefore,
provide cleaner, more consistent input for downstream
feature extraction and ASD classification.

The corresponding MEWT sub-bands for Channel 4
are displayed in Fig. 3 (b). From top to bottom, the panels
show the delta, theta, alpha, beta, and gamma
components in the time domain. The delta component
spans approximately -40 to 40 pV, theta spans
approximately —20 to 20 pV, alpha spans approximately
-8 to 8 pV, beta spans approximately -8 to 8 pV, and
gamma spans approximately -3 to 3 pV. These
differences in vertical scale highlight the natural
attenuation of signal energy with increasing frequency
and confirm that MEWT distributes EEG power into
physiologically meaningful delta—gamma components
that sum to the reconstructed waveform in Fig. 3 (a). For
Channel C3 in the normal example shown in Fig. 3 (c), the
same procedure produces five sub-band signals whose
sum vyields a near-perfect reconstruction of the
Butterworth-filtered EEG, with substantially reduced
residual artifacts. The raw EEG is plotted over
approximately -200 to 200 pV, the band-pass filtered
signal is shown over approximately =150 to 150 uV, and
the MEWT-reconstructed signal is further compressed to
approximately —60 to 60 uV. The reconstructed waveform
appears more regular and clearly oscillatory, indicating
improved signal-to-noise ratio compared with the band-
pass-only output. The corresponding MEWT sub-bands
for Channel C3 are displayed in Fig. 3 (d), where the first
component spans approximately =100 to 50 pV, the
second spans approximately —-20 to 20 uyV, and the
remaining components are plotted over approximately
=10 to 10 pV, confirming that MEWT separates the signal
into aligned sub-band contributions that sum back to the
reconstructed waveform in Fig. 3 (c).

C. EEGNet Result with MEWT

In this study, EEG classification is performed using a
compact convolutional neural network inspired by
EEGNet, applied to preprocessed and segmented EEG
signals. After band-pass filtering and applying the MEWT
method, each recording is cut into 2-s windows with 50%
overlap, and every 16-channel window (16 x 500) is
linearly resampled along the temporal axis to obtain a
uniform input size of 16 x 1000 samples, resulting in a
total of 8940 overlapping EEG snapshots used to train
and evaluate the model. The resulting segments are
evaluated using a 5-fold cross-validation scheme
implemented with shuffled splits. For each split,
approximately 80% of the segments are used for training,
and the remaining 20% for testing. A new network is
initialized and trained from scratch so that no parameters
are shared across folds. The test accuracy across each
fold is then averaged to summarize the model's
generalization performance.

Table 1. The EEGNet Train Test Accuracy Using Five-
Fold Cross-Validation

Fold Train Acc (%) Test Acc (%)
Fold 1 98.90 98.72
Fold 2 98.83 98.94
Fold 3 99.04 98.16
Fold 4 97.69 97.77
Fold 5 98.48 98.16

The EEGNet implementation adopted here consists of
three successive convolutional stages with 8, 4, and 2
filters and temporal kernel sizes of 1 x 32, 2 x 16, and 8 x
4, respectively. Each stage is followed by ELU activation
and batch normalization, while 1 x 4 max-pooling is
applied after the second and third stages with zero-
padding along the time dimension to preserve sufficient
temporal coverage. The final feature maps are flattened
and connected to a single fully connected neuron with
sigmoid activation to produce a binary output. Training in
each fold is performed for up to 50 epochs using the
Adamax optimizer and binary cross-entropy loss, with
classification accuracy on the held-out fold serving as the
primary evaluation metric. The performance of EEGNet
when trained on MEWT-based features is summarized in
Table 1. The training accuracies for the five folds are
98.90%, 98.83%, 99.04%, 97.96%, and 98.48%,
respectively, while the corresponding testing accuracies
are 98.72%, 98.94%, 98.16%, 97.77%, and 98.16%.

The mean training and testing accuracies reach
98.64% and 98.35%, respectively, indicating that the
network consistently learns the MEWT feature
representation without severe overfitting and maintains
very high generalization performance across different
partitions of the data. In addition to accuracy, the detailed
per-fold metrics for EEGNet with MEWT are reported in
Table 2. Across the five folds, accuracy ranges from
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97.77% t0 98.94%, with Precision ranging from 97.70% to
98.77% and Recall ranging from 97.32% to 99.68%. The
F1-Score remains high and stable (97.76%—98.98%),
while Specificity lies between 97.84% and 98.22%. The
mean values over all folds reach 98.35% for Accuracy,
98.24% for Precision, 98.45% for Recall, 98.34% for F1-
Score, and 98.24% for Specificity, with an average AUC
of 99.86%. These results show that the model not only
achieves excellent overall accuracy but also balanced
performance in correctly identifying both normal and ASD
classes. To further characterize the classification behavior
of the model, the confusion matrices for all five folds are
presented in Fig. 4. In every fold, the diagonal entries (true
normal and true ASD) clearly dominate the off-diagonal
ones, indicating that the EEGNet with MEWT model
correctly classifies the vast majority of EEG segments for
both classes. Among these, Fold 2 exhibits the most
favorable pattern, with only 19 misclassified samples out
of 1,791 test instances, which corresponds to an error rate
of approximately 1.1%. In this fold, 846 normal samples
are correctly predicted as normal, and only 16 are
erroneously labeled as ASD, while 926 ASD samples are
correctly identified, and only 3 are predicted as normal.
Thus, false positives and false negatives are both very
rare and remain well balanced.

Table 2. EEGNet MEWT Fold-Level EEG Classification
Performance Using Five-Fold Cross-Validation Metric

Fold Acc Prec Rec F1 Spec
(%) (%) (%) (%) (%)

Fold1 98.72 98.77 98.66 98.72 98.77

Fold2 9894 98.30 99.68 98.98 98.14

Fold3 98.16 97.70 98.50 98.10 97.84
Fold4 97.77 98.20 97.32 97.76  98.21

Fold5 98.16 98.20 98.09 98.15 98.22

This balanced error distribution is important in the
medical context (Table 2) because it shows that the model
does not strongly favor one class over the other; it is able
to maintain high sensitivity to ASD cases (low miss rate)
without sacrificing specificity for normal subjects (low
false-alarm rate). Similar patterns, with slightly higher but
still small numbers of misclassifications, are observed in
the other folds, reinforcing the conclusion that the
EEGNet—-MEWT model is stable across different test
subsets. Overall, the confusion-matrix analysis confirms
that the proposed model is not only accurate in aggregate
metrics, but also reliable and well-calibrated in
distinguishing normal and ASD EEG segments, making it
suitable as a supportive tool for clinical decision-making
in ASD detection
D. Statistical Test (One-Sample t-Test)

As shown in Table 3, all performance metrics lie in a very
high range and are consistent across folds. The mean

accuracy across folds reaches 98.35 * 0.47%, with
precision of 98.23 + 0.38%, recall of 98.45 + 0.86%, F1-

score of 98.34 + 0.50%, and specificity of 98.24 + 0.34%.
Standard deviations below 1% across all metrics indicate
that the variation in performance due to data partitioning
within each fold is relatively small, suggesting that the
model is stable with respect to changes in the training and
test subsets. Inferentially, a one-sample t-test (Table 3)
was conducted to examine whether the mean
classification performance was significantly above the
50% chance level (balanced two-class problem). For
accuracy, the test yielded t(4) = 228.74, p < 0.0001 (one-
tailed), confirming that the mean accuracy of 98.35% is
well beyond random performance. Similar results were
obtained for the other metrics: precision (i(4) = 283.45, p
<0.0001), recall (t(4) = 125.81, p <0.0001), F1-score (t(4)
= 217.93, p < 0.0001), and specificity (t(4) = 320.82, p <
0.0001). Thus, all performance metrics exhibit highly
significant differences relative to chance. Taken together,
these findings indicate that the combination of MEWT as
a feature extraction method and EEGNet as the classifier
can discriminate between ASD and normal subjects with
very high.

Table 3. Fold Averaged Metrics of EEGNet with MEWT
(5-Fold CV) and One-Sample t-Test.

p (one-
Metric Mea(r;/i; SD t(4) tailed vs
° 50%)
Accuracy 98.35+ 0.47 228.74 < 0.0001
Precision 98.23 + 0.38 283.45 < 0.0001
Recall 98.45 + 0.86 125.81 < 0.0001
F1-score  98.34 + 0.50 217.93 < 0.0001
Specificity 98.24 + 0.34 320.82 < 0.0001
Table 4. EEGNet Benchmark Performance
Comparison Across Multiple Evaluation Scenarios
Mean Test
Method Accuracy (%)
EWT with EEGNet [9] 95.08
EMD with EEGNet [9] 97.99
MEWT with EEGNet
with EEGNe 98.35

(proposed Method)

IV. Discussion

In this study, we focused on evaluating a new MEWT with
an EEGNet pipeline for ASD-EEG classification. The
proposed model, trained on 16-channel EEG segments
(2-s windows, 50% overlap, 16 x 1000 input), achieved a
mean test accuracy of 98.35%, with high and stable
precision, recall, F1-score, specificity, and AUC across the
five folds. The confusion matrices show that the MEWT-
based model produces very few, well-balanced false
positives and false negatives, indicating reliable
separation between ASD and normal segments. To verify
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that this performance is genuinely above chance, a one-
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Fig. 4. Confusion matrices for each fold in 5-fold cross-validation: (a) Fold 1, (b) Fold 2, (c) Fold 3, (d) Fold
4, (e) Fold 5
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sample t-test against the 50% chance level (balanced
two-class setting) was conducted on the five folds. For
accuracy, the test vyielded t(4)=228.74with p <
0.0001(one-tailed), confirming that the mean accuracy of
98.35% is far beyond random performance. Similar
results were obtained for precision (t(4) = 283.45,p <
0.0001), recall (t(4)=125.81,p <0.0001), F1-score
(t(4) = 217.93,p < 0.0001), and specificity (t(4) =
320.82,p < 0.0001), showing that all metrics are
significantly higher than the chance baseline

For context, the proposed MEWT with the EEGNet
method is benchmarked against the previous study [9]. on
the same ASD EEG dataset, which employed EWT and
EMD-based features with EEGNet under a subject-wise
5-fold cross-validation scheme. The earlier work reported
mean test accuracies of 95.08% for EWT with EEGNet
and 97.99% for EMD with EEGNet [9]. As summarized in
Table 4, the proposed MEWT with the EEGNet pipeline
improves the EWT-based baseline by 3.27 percentage
points (95.08% — 98.35%) and slightly outperforms the
EMD-based baseline by 0.36 percentage points (97.99%
— 98.35%). These gains suggest that multichannel,
spectrally aligned features produced by MEWT are
particularly suitable for a compact convolutional
architecture such as EEGNet on this ASD-EEG dataset
and that the main limitation of the original EWT pipeline
lies in its univariate, per-channel implementation. The
clearer gap between MEWT-EEGNet and EWT-EEGNet
is mainly attributed to cross-electrode spectral
consistency. With univariate EWT, sub-band boundaries
are estimated independently per channel, so the same
sub-band index can represent slightly different frequency
content across electrodes, increasing feature variability
and weakening multichannel learning. In contrast, MEWT
derives boundaries from the trial-level multichannel
spectrum and applies a shared filter bank across all
electrodes, producing spectrally aligned sub-bands that
better match EEGNet's multichannel spatial-temporal
modeling.

The smaller margin over EMD-EEGNet is consistent
with both methods being adaptive, but MEWT is typically
more controlled and repeatable because it enforces a
fixed five-band partition with multichannel-derived
boundaries, whereas EMD can exhibit mode variability
and mode-mixing across segments. We also link this
mechanism to Fig. 3 (a)—(d), where MEWT reconstruction
shows a more regular oscillatory waveform and reduced
transient excursions relative to band-pass outputs,
supporting a cleaner and more stable input for EEGNet.
Even so, the scope of the present work is intentionally
narrow; only the MEWT with the EEGNet pipeline is
trained and analyzed in detail, and comparisons to EWT
and EMD-based methods are made at the benchmark
level using previously published results. Future studies
will retrain all three feature families (EWT, EMD, and
MEWT) under exactly the same segmentation and cross-
validation protocol, extend the evaluation to additional
classifiers (e.g., SVM-RBF or shallow CNNs, and
transformers), and test the MEWT with the EEGNet
pipeline on larger and more heterogeneous cohorts to

assess how well the observed gains carry over to new
subjects and recording conditions.

Because the EWT with EEGNet and EMD with
EEGNet results were taken from previously published
studies, cross-study comparisons may still be influenced
by differences in the sample construction stage
(segmentation/epoching), such as window length,
overlap, and segmentation rules. To strengthen fairness,
we explicitly matched the key controllable factors: the
same dataset, a subject-wise cross-validation protocol,
the same EEGNet-style classifier family, the same
number of training epochs, and the same reporting
metrics. Consequently, the remaining discrepancy
primarily reflects the impact of segmentation choices in
the referenced studies; therefore, we interpret this
benchmark as a contextual comparison rather than a strict
head-to-head leaderboard [9].

A similar caution applies to computational efficiency.
Beyond classification performance, we assessed
computational efficiency to support the pipeline’s
suitability for screening in resource-constrained settings
by reporting model complexity, EEGNet inference latency,
and the computational cost of the signal-representation
stage. The EEGNet implementation is lightweight; with a
16-channel x 1000-sample input, it contains 3,139
trainable parameters, implying a small memory footprint.
We emphasize that end-to-end runtime is also affected by
the segmentation setup: MEWT uses 2-s segments with
50% overlap (batch size 64), whereas the EWT/EMD
baselines use 4-s segments with 50% overlap, making
raw comparisons of total training or inference time
potentially biased by different segment lengths.
Therefore, we report more comparable metrics per-
segment inference latency and  per-segment
representation runtime (and throughput at the chosen
batch size) to enable transparent assessment of
computational trade-offs and deployment-time cost
estimation, particularly given that prior EWT/EMD studies
do not consistently report runtime metrics.

Although the subject-wise cross-validation results are
strong, the study can be further strengthened by testing
the pipeline on larger, more diverse datasets and across
different recording/segmentation settings to confirm
generalization better. The subject-wise 5-fold evaluation
is appropriate for preventing information leakage, but
additional validation (e.g., external validation) could
provide a more comprehensive view of inter-individual
variability. To reduce degrees of freedom, we used a fixed
preprocessing configuration (0.5-40 Hz band-pass) and a
fixed segmentation strategy (2-s windows, 50% overlap)
across all folds. Although the fold-to-fold variation is small,
we did not conduct an exhaustive sensitivity analysis
across learning rates, batch sizes, or MEWT parameters;
this is now explicitly stated as a limitation, consistent with
recent discussions on how preprocessing and partitioning
choices can influence decoding performance [36], [39].
Consistent with this, misclassifications in our current
cohort are infrequent and remain approximately balanced
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between false positives and false negatives (Table 2 and
Fig. 4), suggesting no systematic bias toward either class.
However, the small cohort size limits statistically robust
subject-level or segment-level error characterization,
such as determining whether errors cluster in specific
participants or recur in particular segment types; this will
be a focused direction for future work as larger multi-site
datasets become available. In addition, the current
comparison with EWT and EMD is benchmark-based, as
in prior studies, so retraining all methods under a fully
identical protocol would enable a fairer comparison, and
interpretability analyses could be added to better link the
results to neurophysiological meaning and practical
applicability. Additionally, sex distribution and detailed
diagnostic instruments for the ASD cohort were
inconsistently documented in the source dataset, limiting
demographic and clinical subgroup analyses.

These findings indicate that using MEWT to align
frequency-band boundaries across channels can improve
multichannel EEG representations and work effectively
with compact classifiers such as EEGNet. The
consistently high performance under subject-wise
validation also suggests that the proposed pipeline has
potential as a computationally efficient screening-oriented
model, particularly in resource-constrained settings [9]. In
addition, this study highlights the importance of validation
design, especially subject-wise grouping as a minimum
standard, to avoid biased evaluation and to better reflect
real-world performance. Overall, the results motivate
future work to adopt multichannel
decomposition/denoising and to test it on larger, more
diverse cohorts under standardized protocols to support
the development of more robust and transferable EEG-
based ASD biomarkers [41]. Building a deployable
screening tool on these findings, several requirements
extend beyond predictive performance alone. These
include robust, automated signal-quality assessment and
artifact detection; standardized acquisition procedures to
ensure reproducible measurements across operators and
sites; and clinician-oriented interfaces that present
outputs in an interpretable and actionable manner.
Moreover, prospective validation on representative, real-
world cohorts is essential to quantify performance under
operational  conditions, including  variation in
demographics, comorbidities, and recording
environments [42],[43]. Equally important are ethical,
regulatory, and governance considerations. Clinically,
both false reassurance and false alarms carry non-trivial
consequences, necessitating transparent communication
of model uncertainty, intended use, and limitations,
alongside appropriate clinical oversight and escalation
pathways. Prior to any diagnostic deployment,
compliance with applicable regulatory frameworks and
rigorous data-governance provisions covering privacy,
security, consent, auditability, and ongoing performance
monitoring would be required to ensure safe and
responsible use [44].

V. Conclusion

This study presents an ASD-EEG classification pipeline
that integrates the Multivariate Empirical Wavelet
Transform (MEWT) with EEGNet using 16-channel EEG
recordings, segmented into 2-s windows with 50%
overlap and resampled to a 16 x 1000 input format. The
proposed model achieved a mean test accuracy of
98.35%, with a precision 98.23%, a recall 98.45%, an F1-
score 98.34%, a specificity 98.24%, and an AUC 99.86%
across five cross-validation folds, while confusion-matrix
analysis showed consistently low and balanced false
positives and false negatives. A one-sample t-test against
the 50% chance level confirmed that all metrics were
highly significant (p < 0.0001). When compared on the
same dataset, the MEWT with the EEGNet approach
outperformed EWT with the EEGNet (95.08%) and slightly
improved upon EMD with the EEGNet (97.99%),
demonstrating the effectiveness of multichannel,
spectrally aligned features for ASDEEG classification.
Although the results indicate high accuracy, stability, and
balanced sensitivity—specificity, the study is limited by a
small, single-site dataset and a single deep-learning
architecture, suggesting the need for future validation in
larger cohorts and with additional classifiers.
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