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Abstract   

Accurate and reliable classification of autism spectrum disorder (ASD) from 
electroencephalography (EEG) signals remains challenging due to the inherently 
nonstationary, nonlinear, and multichannel nature of EEG data. These properties 
complicate the extraction of discriminative features that are both stable and 
computationally efficient. To address this challenge, this study proposes a compact 
deep-learning pipeline that integrates the Multivariate Empirical Wavelet Transform 
(MEWT) with EEGNet for ASD–EEG classification. MEWT decomposes multichannel 
EEG signals into spectrally aligned subbands while preserving inter-channel 
relationships. The resulting MEWT-based features are then processed by EEGNet, a 
lightweight convolutional neural network specifically designed for EEG-based 
learning tasks. Performance was evaluated using 5-fold cross-validation. The 
proposed MEWT with the the EEGNet model achieved a mean test accuracy of 
98.35%, with consistently high precision (98.23%), recall (98.45%), F1-score (98.34%), 
and specificity (98.24%) across all folds. Confusion-matrix results indicated very few 
and well-balanced false positives and false negatives, supporting stable 
discrimination between ASD and control EEG segments. A one-sample one-tailed t-
test against a 50% chance level confirmed that all evaluated metrics were 
significantly above chance (p < 0.0001). When benchmarked against previously 
reported results on the same dataset, the proposed approach slightly improved upon 
EMD with EEGNet (97.99%) and clearly outperformed EWT with EEGNet (95.08%), 
suggesting that MEWT-derived multichannel features are well matched to compact 
convolutional architectures for ASD–EEG analysis. Despite these strong results, the 
study is limited by a small, single-site cohort and the use of a single deep-learning 
model. Future work will focus on standardized retraining across multiple feature 
families and validation on larger and more diverse populations to further assess 
robustness and generalizability. 
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I. Introduction 

Disorders in individuals with ASD are related to changes 
in the function of the frontal and temporal lobes. In 
general, increased brain wave activity in the delta to theta 
frequency band is observed in the frontal area, which is 
associated with lower cognitive performance [1]. In 
individuals with ASD, alpha wave activity, commonly 
associated with relaxation, tends to be lower, while beta 
wave activity, associated with focus and attention, tends 
to be higher. This oscillation pattern suggests that brain 
wave dynamics may play a role in the developmental 
mechanisms of ASD [2]. Recent reviews and meta-
analyses suggest that ASD-related EEG findings are 
heterogeneous, encompassing band-specific power 
alterations in delta, theta, alpha, and beta ranges, atypical 
functional connectivity patterns, and changes in signal 
complexity. Reported effects also appear to be moderated 
by factors such as age, behavioral state during recording, 
and acquisition protocols. Collectively, these observations 

motivate feature representations that are physiologically 
interpretable in the spectral domain while remaining 
robust to cross-channel variability and protocol-related 
differences [3],[4]. 

Brain activity can be studied through functional 
imaging, which measures brain signals using EEG 
(Electroencephalography)[5]. EEG is a method for 
recording the brain's spontaneous electrical activity, 
arising from the transmission of signals between neurons. 
Recording is generally performed for short durations, 
around 20-40 minutes, by placing electrodes at several 
points on the scalp [6]. EEG signals require feature 
extraction to convert raw signals into meaningful 
indicators of information. These features enable analysis 
and classification in various applications, such as emotion 
recognition, BCI, seizure detection, and ASD identification 
[7]. The feature extraction process generally includes 
preprocessing, decomposition, and then the extraction of 
relevant features from the processed signal. Various 
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approaches can be used, such as statistical measures, 
time–frequency analysis, and advanced decomposition 
techniques such as Multivariate Empirical Wavelet 
Transform (MEWT) [8].  

On the same dataset, a prior study used the Empirical 
Wavelet Transform (EWT) with EEGNet to classify ASD 
vs. non-ASD subjects, achieving an average test 
accuracy of 95.08% [9]. Nevertheless, EWT was applied 
univariately (per channel), meaning that frequency-band 
boundaries could differ across channels; consequently, 
cross-channel consistency and synchronization 
information may not be optimally preserved. Motivated by 
this limitation, this work replaces EWT with MEWT while 
retaining EEGNet as the classifier, aiming to produce 
time–frequency representations that are more consistent 
across channels for ASD detection [9]. MEWT 
decomposes multichannel signals into a set of 
multivariate wavelet coefficients that capture time and 
frequency information simultaneously across all channels 
[10]. Unlike univariate decompositions, MEWT jointly 
determines band boundaries across channels, so that 
each channel is analyzed under an identical frequency 
partition. This property is particularly relevant for EEG, 
where synchronous patterns across channels may carry 
discriminative information; therefore, MEWT is expected 
to improve the stability and reliability of extracted time-
frequency features in multichannel ASD EEG analysis 
[11]. MEWT extends univariate EWT by deriving a single, 
data-driven empirical wavelet filter bank from a 
representative multichannel spectrum and applying it 
uniformly across channels, thereby promoting 
multichannel-consistent, spectrally aligned sub-bands. 
EEGNet complements this representation through 
temporal convolutions that learn local time patterns and 
depthwise spatial convolutions that model inter-channel 
coordination with very few trainable parameters, making it 
suitable for compact, screening-oriented EEG pipelines 
[12], [13] 

The next step is classification modeling to map MEWT 
vectors to ASD and normal labels. This study selected one 
deep learning model paradigm, namely, EEGNet [14]. 
EEGNet is selected for three main reasons: (i) it is 
effective for modeling nonlinear and noisy EEG 
characteristics, (ii) it is computationally efficient for 
controlled training and validation, and (iii) it has 
demonstrated strong performance across diverse EEG 
tasks when evaluated under proper validation protocols 
[12]. Architecturally, EEGNet captures temporal patterns 
via temporal convolutions, models inter-channel 
coordination through depthwise spatial convolutions, and 
reduces parameter complexity using separable 
convolutions without substantially sacrificing 
representational capacity[13]. Accordingly, this work 
evaluates performance using Accuracy, Precision, Recall, 
F1-score, and Specificity, complemented by inferential 
assessment. Based on this background, the objectives of 
this study are to: (i) evaluate the ability of MEWT to 
generate stable and consistent time–frequency features 
across channels in a multichannel ASD EEG dataset, and 
(ii) assess the performance of the MEWT–EEGNet 

combination in distinguishing ASD and non-ASD subjects 
at the subject level using rigorous subject-wise validation. 

The contributions of this study are as follows: 1) We 
propose an ASD EEG classification pipeline that replaces 
univariate EWT with multichannel-consistent MEWT to 
improve cross-channel alignment of time–frequency 
representations, 2) We integrate MEWT features with 
EEGNet to simultaneously model temporal and spatial 
EEG patterns using a compact and computationally 
efficient CNN architecture, 3) We provide a subject-wise 
K-fold evaluation protocol to prevent intra-subject leakage 
and report comprehensive metrics (Accuracy, Precision, 
Recall, F1-score, and Specificity) to characterize 
performance robustness across individuals. 

This paper is organized as follows: This paper is 
organized as follows: Section I introduces the research 
background, problem formulation, and main contributions 
of this study. Section II reviews the materials and 
methodological background, including EEG 
preprocessing, MEWT, and EEGNet. Section III describes 
the results. Section IV presents the experimental results 
and discusses the comparative findings. Finally, Section 
V concludes the paper and outlines future work. 

 

II. Materials and Method  

Fig. 1 summarizes the workflow of this study. The data 

come from the Primer EEG dataset, consisting of 10 
subjects (5 with ASD, 5 controls) recorded with 16 
channels at a sampling frequency of 250 Hz. Raw EEG 
signals were visually checked, then preprocessed using a 
zero-phase 0.5–40 Hz Butterworth band-pass filter, and 
segmented into fixed-length epochs that served as 
individual samples. For feature extraction, the 
preprocessed multichannel EEG was decomposed using 
Multivariate Empirical Wavelet Transform (MEWT). A 
representative multichannel spectrum was used to design 
a common empirical wavelet filter bank, ensuring 
consistent frequency bands for all channels. The resulting 
MEWT filter bank was applied uniformly to each channel 
to obtain spectrally aligned sub-bands; these sub-bands 
were then summed to reconstruct a denoised 
multichannel signal per subject. The denoised EEG was 
segmented into fixed-length epochs and used as input to 
EEGNet for end-to-end classification. Performance was 
reported with subject-wise 5-fold cross-validation and 
fold-level metrics (Accuracy, Precision, Recall, F1-score, 
and Specificity).  

All data were split into 80% training and 20% test data 
under a subject-wise 5-fold cross-validation scheme, so 
that epochs from the same subject did not appear in both 
training and test sets within a fold. The classification stage 
used EEGNet with the Adamax optimizer, a learning rate 
of 0.001, a batch size of 64, 50 training epochs, and binary 
cross-entropy loss. For each fold, the model was trained 
on the training set and evaluated on the test set. 
Performance was assessed using learning curves 
(training/validation accuracy and loss), the confusion 
matrix (TP, FP, FN, TN), and the metrics Accuracy, 
Precision, Recall, F1-score, and Specificity across folds. 
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A. Dataset  

The materials required for this study were EEG signal 
datasets, consisting of raw EEG data from individuals with 
ASD and from normal individuals, acquired directly from 
subjects using the Open BCI Cyton Board. EEG data were 
collected from ten participants in Banda Aceh, Indonesia, 
who were divided into two groups. The first group 
consisted of five adolescents and young adults aged 15 
to 25 years with Autism Spectrum Disorder (ASD) 
recruited from local special schools, while the second 
group consisted of five neurotypical individuals aged 17 to 
25 years living around Syiah Kuala University. Data 
collection was conducted in a quiet and controlled room 
between 9:00 a.m. and 12:00 p.m. to keep participants 
calm and cooperative. Each session lasted approximately 
40 minutes, including 10 minutes for preparation and 
electrode placement, and two 15-minute recording 
sessions [15]. All research procedures have been 
approved by the Ethics Committee with reference number 
117/EA/FK/2024 and are declared to be in accordance 
with the WHO 2011 standards. The dataset used in this 
study involves 16 channels, which represent the location 
of electrode placement on the scalp during the EEG signal 
acquisition process. The electrode placement consisted 
of the Frontal (front of the brain) section, which included 
channels Fp1, Fp2, F7, F3, Fz, F4, and F8. The Temporal 
(middle side) section included channels T3 and T5. The 
Central (top center) section included channels C3, C4, 
and Cz. Finally, the Parietal (upper back) and Occipital 
(lower back) sections include channels Pz, O1, and Oz 
[16].  

B. Butterworth Band Pass Filter  

A Butterworth band-pass filter is a filter with a flat 
maximum magnitude response in the passband, so that 
the signal amplitude within a certain frequency range 

remains flat [17]. This filter is formed from a combination 
of high-pass and low-pass filters, so that only frequencies 
between the two cut-off frequencies are passed, while 
frequencies outside that range are attenuated [18]. Its 
characteristics are that the amplitude is very flat in the 
band-pass, but the phase response is not linear, so the 
phase change depends on the signal frequency [17]. In 
this study, EEG recordings were acquired at a sampling 
rate of 250 Hz, and all 16 available channels were 
included in the analysis. During preprocessing, each 
channel was passed through a 4th-order Butterworth 
band-pass filter with cut-off frequencies of 0.5 and 40 Hz. 
This type of filter was chosen because its maximally flat 
passband magnitude helps maintain the original 
waveform with minimal distortion [19]. The 0.5–40 Hz 
range spans the principal EEG rhythms delta, theta, 
alpha, beta, and part of the low-gamma band while 
simultaneously suppressing very slow components 
caused by drift and body movements, as well as higher-
frequency disturbances from muscle activity and 
environmental noise. These settings were tailored to the 
spectral characteristics of EEG signals, ensuring that 
subsequent feature extraction and classification 
stageoperate on clean, informative signals. Similar pass-
band choices (0.5–40 Hz) are widely used to mitigate drift 
and EMG contamination and to stabilize downstream 
decoding performance across preprocessing settings. 
[20], [21].  

After preprocessing, each subject’s continuous EEG 

was segmented into fixed-length epochs of 2 s (500 

samples at 250 Hz) with 50% overlap. A 2-s epoch is a 

practical trade-off: it is short enough to approximate local 

stationarity and increase the number of training samples, 

yet long enough to preserve the oscillatory dynamics 

commonly reported in ASD EEG studies. A 50% overlap 

 

Fig. 1. Block diagram of preprocessing, MEWT feature extraction, and EEGNet classification 
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improves temporal coverage while limiting redundancy 

relative to higher-overlap settings [22], [23]. Because 

overlapping epochs from the same subject are highly 

correlated, we used subject-wise cross-validation to 

prevent identity confounding and data leakage when 

forming train and test splits [24], [25].   

C. Multivariate Empirical Wavelet Transform  

The Multivariate Empirical Wavelet Transform (MEWT) is 
a multichannel generalization of the Empirical Wavelet 
Transform (EWT) that decomposes multivariate signals 
using a single, data-driven set of frequency boundaries 
shared across channels. Unlike univariate EWT, which 
estimates spectral boundaries independently for each 
channel, MEWT first analyzes the joint multichannel 
Fourier spectrum of an EEG trial to identify salient spectral 
transitions and define a common partition of the frequency 
axis [26], [11]. These empirically determined band limits 
are computed once per trial (or per dataset, depending on 
the implementation) and then used to construct an 
adaptive wavelet filter bank, which is applied identically to 
every channel. As a result, the extracted sub-bands are 
spectrally co-registered across electrodes, facilitating 
direct cross-channel comparison and stabilizing 
multichannel learning, while preserving the smooth, tight-
frame reconstruction properties and adaptivity that 
characterize EWT [27],[28],[29].  

1. Fourier Transform & Multichannel Spectral 
Aggregation 

The first step is to transform the EEG signal into the 
frequency domain. For each EEG channel 𝑥𝑐(𝑡), with 𝑐 =
1, … , 𝐶,) the Fast Fourier Transform (FFT) is calculated in 

Eq. (1) [30]: 

𝑋𝑐̂(𝜔) = ℱ𝑥𝑐(𝑡)   (1) 

The spectrum 𝑋̂𝑐(𝜔) describes how the energy of the 

channel 𝑐 is distributed at a frequency 𝜔. o obtain a 

combined spectral representation of all channels, a 
composite spectrum 𝑆(𝜔) is formed using two commonly 

used forms, Eq. (2) [29] and Eq. (3) [29]: 

(i) Average spectral magnitude 

𝑆̅(ω) =
1

𝐶
∑|𝑋𝑐̂(ω)|

𝐶

𝑐=1

 (2) 

(ii) Spectral root-sum-of-squares (energy) 

𝑆̅(ω) = (∑|𝑋𝑐̂(ω)|
2

𝐶

𝑐=1

)

1/2

 (3) 

The combined spectrum 𝑆‾(𝜔) is then smoothed to 

stabilize peak and valley detection. The frequency domain 
[0, 𝜔Nyq] is then segmented into 𝐾 bands with boundaries 

Ω = {𝜔1, … , 𝜔𝐾}  obtained through local peak searches on 

𝑆‾(𝜔) nd boundary placement at the midpoint between 

peaks. This mechanism underlies the adaptive nature of 
MEWT compared to non-adaptive wavelet systems 
[28],[29]. In this study, we constructed the representative 
multichannel spectrum using the spectral root-sum-of-

squares formulation (Eq. (3)) [29], which emphasizes 
shared spectral peaks across channels and has been 
adopted in multidimensional empirical wavelet transform 
implementations for multichannel EEG.  
2. Meyer-like Window Construction (Scaling & Wavelet) 

After the band limits are determined, a scaling function 
and wavelet function (Meyer-like windows) are 
constructed in the frequency domain (Eq. (4)) [29]. The 
scaling  𝜑0̂(𝜔) covers low frequencies, while the wavelet 

𝜓𝑘̂(𝜔) is active in the range [𝜔𝑘 , 𝜔𝑘+1] with smooth edges 

(roll-off). 

{𝜑0̂(𝜔), 𝜓𝑘̂(𝜔)}𝑘=1
𝐾    (4) 

Smooth transitions between bands ensure that the filter 
bank does not abruptly cut off the spectrum, but 
ratherinstead forms a stable, redundant empirical wavelet 

frame. Because the shapes of  𝜑̂0(𝜔) and 𝜓̂𝑘(𝜔) follow 

the spectrum structure 𝑆(𝜔) obtained from the data, this 

filter bank is empirical and adaptive, unlike conventional 
wavelets that depend on predefined scale and translation 
parameters [29],[31]. 

3. Cross-Channel Uniform Subband Projection  

The bank filter formed is then applied uniformly to each 
EEG channel, so that each channel has a subband with 
identical frequency limits. The projection for channel -𝑐 is 

given by Eq. (5) [32]: 

𝑥𝑐,0(𝑡) = ℱ−1𝜑0̂(𝜔) 𝑋𝑐̂(𝜔) 

𝑥𝑐,𝑘(𝑡) = ℱ−1𝜓𝑘̂(𝜔) 𝑋𝑐̂(𝜔), 𝑘 = 1, … , 𝐾 
(5) 

This decomposition produces a set of subband signals for 
each channel with a consistent band structure across 
channels. This configuration allows features such as 
energy, spectral entropy, and center frequency (centroid) 
to be calculated for each subband and directly compared 
across channels and subjects in the same frequency 
domain [29], [32]. 

D. EEGNet 

EEGNet is a compact CNN designed for EEG 
classification that organizes feature learning into three 
core stages Fig. 2: temporal filtering, spatial filtering per 
temporal feature (capturing inter-channel relationships), 
and efficient feature fusion via separable convolution [9], 
[12], [14], [33]. Mathematically, the first stage applies a 
time-domain convolution to each channel to produce 
temporal feature maps (Eq. (6)) [12]: 

𝑍𝑓(𝑐, 𝑡) = ∑ 𝑊𝑓,𝜏
(1)

𝐿

𝜏=1

 𝑋(𝑐, 𝑡 + 𝜏 − 1) + 𝑏𝑓 (6) 

In Eq. (6) [12], where 𝑋(𝑐, 𝑡)denotes the EEG sample 

from channel 𝑐at time 𝑡, 𝐿is the temporal kernel length, 

𝑊(1)are the kernel weights, and 𝑏𝑓is the bias term [34]. 

Next, DepthwiseConv2D acts as a spatial filter that 
aggregates information across channels for each 
temporal feature map separately: 

𝑌𝑓(𝑡) = ∑ 𝑊𝑓,𝑐
(2)

𝐶

𝑐=1

 𝑍𝑓(𝑐, 𝑡) (7) 
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In Eq. (7) [12], where 𝐶is the number of channels and 

𝑊(2)are the spatial-filter weights [12]. Finally, 

SeparableConv2D compresses and combines the 
resulting feature maps into a more compact 
representation by merging information across features 
(Eq. (8)) [12]: 

𝑈𝑘(𝑡) = ∑ 𝑊𝑘,𝑓
(3)

𝐹

𝑓=1

 𝑌𝑓(𝑡) + 𝑏𝑘 (8) 

In Eq. (8) [12], where 𝑊(3)are the fusion weights, 𝑏𝑘is 

the bias, and 𝑘 indexes the final filters. The resulting 

features are then passed to a pooling and a classification 

layer to produce the final decision [9]. EEGNet 

configuration used in this study follows a compact 
EEGNet-style design. We employed three successive 
convolutional stages with 8, 4, and 2 filters and kernel 
sizes of 1 × 32, 2 × 16, and 8 × 4, respectively. Each stage 
was followed by ELU activation and batch normalization. 
Temporal downsampling was performed using max-
pooling with a pool size of 1 × 4 after the second and third 
stages, while zero-padding along the time dimension was 
applied to maintain adequate temporal coverage.  

The resulting feature maps were flattened and passed 
to a single fully connected neuron with a sigmoid 
activation to produce a binary output. Training in each fold 
was conducted for up to 50 epochs using the Adamax 
optimizer and binary cross-entropy loss. The 
compactness of EEGNet (0,001 trainable parameters in 
common configurations) has been widely reported, 
supporting its suitability for resource-constrained 
deployment [12]  

E. K-Fold Cross Validation 

K-Fold cross-validation is one of the most commonly used 
cross-validation techniques in machine learning to 
measure overall model performance. This method works 
by dividing the dataset into k subsets or folds of similar 
size; then the model is trained on  𝑘 -1 folds and tested on 

the remaining fold. This process is repeated k times, so 
that all data is used in turn for training and testing. The 
average value of all test results is then used as an 
indicator of the overall performance of the model [35], 
[36]. Mathematically, if 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1

𝑛  is a dataset with n 

samples, and 𝐷𝑗 s the jth subset of  𝑘 -fold, then the 

average accuracy can be expressed as Eq. (9) [35]: 

Accuracyavg   =   
1

𝑘
∑ Accuracy

𝑘

𝑗=1

(𝑀−𝑗 , 𝐷𝑗), (9) 

In Eq. (9) [35], where 𝑀−𝑗 is the model trained on all data 

except fold -𝑗, and 𝐷𝑗 is the validation data. Recent studies 

show that the use of K-Fold Cross-Validation can reduce 
the risk of overfitting and improve the stability of 
generalization for EEG signal classification models [35], 
[36], [37]. In this work, we implemented a subject-wise 5-
fold cross-validation scheme: the 10 subjects (5 ASD, 5 
control) were partitioned into five folds, with each fold 
holding out 2 subjects (1 ASD and 1 control), 
corresponding to approximately 20% of the subjects for 
testing, while the remaining 8 subjects (80%) were used 
for training. All epochs generated from a held-out subject 
were kept exclusively in the test set for that fold. This 
design is recommended for EEG deep learning studies 
because random segment-level splits can substantially 

 

Fig.  2. Schematic diagram of the EEGNet model for EEG signal classification 
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overestimate performance when subject identity leaks 
across folds. [24], [25]. A confusion matrix is used to 
evaluate the performance of machine learning and deep 
learning models by displaying a summary of prediction 
results in matrix form, enabling evaluation metrics such as 
accuracy, precision, recall, and specificity to be calculated 
systematically [38],[39]. A confusion matrix generally 
consists of four components, namely TP (true positive), 
FP (false positive), TN (true negative), and FN (false 
negative) [40]. 

 

III. Results  
A. Butterworth Band Pass  

In the first preprocessing step, the EEG is restricted to the 
conventional analysis band using a Butterworth band-
pass filter with cut-off frequencies of 0,5–40 Hz (middle 
panel, orange trace). The upper panel of Fig.3 displays 
the raw Channel-4 (C3) recording (red), which still 
contains large, slow drifts and sporadic high-amplitude 
spikes, with values ranging roughly from −100 to 200 µV. 
These fluctuations reflect a mixture of ocular, movement, 
and environmental artifacts that mask the underlying 
cortical rhythms and yield a highly unstable baseline. After 

applying the 4–40 Hz Butterworth filter, the waveform in 
the middle panel becomes more compact and regular, 
with amplitudes confined to about −80 to 80 µV. Low-
frequency baseline wander and very high-frequency noise 
are strongly attenuated, while oscillatory activity in the 
classical EEG bands is preserved. Because the 
Butterworth filter has a maximally flat magnitude response 
in the passband, it suppresses out-of-band components 
without introducing ripples, thereby maintaining the 
essential temporal structure required for subsequent 
multichannel processing 

B. MEWT  

The bottom panel of Fig. 3 (a) shows the same channel 

after Multivariate Empirical Wavelet Transform (MEWT) 
decomposition and reconstruction (blue trace). Following 
the decomposition stage, the five resulting components 
are recombined by time-domain aggregation to form a 
reconstructed signal for each channel. When minor length 
mismatches arise from padding operations or rounding in 
index computations, a one-dimensional linear 
interpolation step is used to resample the reconstruction 
to match the original signal duration. This reconstruction 
procedure further suppresses remaining ocular and EMG-

                   

(a)                                                                                             (c) 

                     

(b)                                                                                                       (d) 

Fig. 3. Time domain MEWT visualization: (a) raw EEG signal, band-pass filtered signal ASD, and MEWT-
reconstructed signal, (b) five ASD MEWT sub-band, (c) raw EEG signal, band-pass filtered signal NORMAL, 
and MEWT-reconstructed signal, (d) five NORMAL MEWT sub-band 
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related artifacts beyond what band-pass filtering alone 
can remove, while maintaining the essential waveform 
structure prior to classification. 

MEWT is applied jointly to all EEG channels. The 
combined multichannel spectrum of each trial is used to 
derive adaptive frequency boundaries that define five 
non-overlapping sub-bands associated with delta, theta, 
alpha, beta, and gamma activity. The same empirically 
derived wavelet filter bank is then applied to every 
channel, ensuring that sub-band contents are aligned 
across the 16 electrodes. For the ASD example in 
Channel 4 shown in Fig. 3(a), the raw EEG is plotted over 
approximately −200 to 200 µV, the Butterworth band-
pass-filtered signal is shown over approximately −100 to 
100 µV, and the MEWT-reconstructed signal is further 
compressed to approximately −80 to 60 µV. The 
reconstructed waveform becomes more regular and 
clearly oscillatory than the band-pass-only output, 
indicating an improved signal-to-noise ratio. Slow drifts 
and sharp muscle-related transients that survive 
conventional band-pass filtering are largely reduced, 
while the morphology of the underlying cortical rhythms is 
preserved. The MEWT-reconstructed signals, therefore, 
provide cleaner, more consistent input for downstream 
feature extraction and ASD classification. 

The corresponding MEWT sub-bands for Channel 4 
are displayed in Fig. 3 (b). From top to bottom, the panels 
show the delta, theta, alpha, beta, and gamma 
components in the time domain. The delta component 
spans approximately −40 to 40 µV, theta spans 
approximately −20 to 20 µV, alpha spans approximately 
−8 to 8 µV, beta spans approximately −8 to 8 µV, and 
gamma spans approximately −3 to 3 µV. These 
differences in vertical scale highlight the natural 
attenuation of signal energy with increasing frequency 
and confirm that MEWT distributes EEG power into 
physiologically meaningful delta–gamma components 
that sum to the reconstructed waveform in Fig. 3 (a). For 
Channel C3 in the normal example shown in Fig. 3 (c), the 
same procedure produces five sub-band signals whose 
sum yields a near-perfect reconstruction of the 
Butterworth-filtered EEG, with substantially reduced 
residual artifacts. The raw EEG is plotted over 
approximately −200 to 200 µV, the band-pass filtered 
signal is shown over approximately −150 to 150 µV, and 
the MEWT-reconstructed signal is further compressed to 
approximately −60 to 60 µV. The reconstructed waveform 
appears more regular and clearly oscillatory, indicating 
improved signal-to-noise ratio compared with the band-
pass-only output. The corresponding MEWT sub-bands 
for Channel C3 are displayed in Fig. 3 (d), where the first 
component spans approximately −100 to 50 µV, the 
second spans approximately −20 to 20 µV, and the 
remaining components are plotted over approximately 
−10 to 10 µV, confirming that MEWT separates the signal 
into aligned sub-band contributions that sum back to the 
reconstructed waveform in Fig. 3 (c). 

C. EEGNet Result with MEWT 

In this study, EEG classification is performed using a 
compact convolutional neural network inspired by 
EEGNet, applied to preprocessed and segmented EEG 
signals. After band-pass filtering and applying the MEWT 
method, each recording is cut into 2-s windows with 50% 
overlap, and every 16-channel window (16 × 500) is 
linearly resampled along the temporal axis to obtain a 
uniform input size of 16 × 1000 samples, resulting in a 
total of  8940 overlapping EEG snapshots used to train 
and evaluate the model. The resulting segments are 
evaluated using a 5-fold cross-validation scheme 
implemented with shuffled splits. For each split, 
approximately 80% of the segments are used for training, 
and the remaining 20% for testing. A new network is 
initialized and trained from scratch so that no parameters 
are shared across folds. The test accuracy across each 
fold is then averaged to summarize the model's 
generalization performance.  

 

Table 1. The EEGNet Train Test Accuracy Using Five-
Fold Cross-Validation 

 

Fold Train Acc (%) Test Acc (%) 

Fold 1 98.90 98.72 

Fold 2 98.83 98.94 

Fold 3 99.04 98.16 

Fold 4 97.69 97.77 

Fold 5 98.48 98.16 

 

The EEGNet implementation adopted here consists of 
three successive convolutional stages with 8, 4, and 2 
filters and temporal kernel sizes of 1 × 32, 2 × 16, and 8 × 
4, respectively. Each stage is followed by ELU activation 
and batch normalization, while 1 × 4 max-pooling is 
applied after the second and third stages with zero-
padding along the time dimension to preserve sufficient 
temporal coverage. The final feature maps are flattened 
and connected to a single fully connected neuron with 
sigmoid activation to produce a binary output. Training in 
each fold is performed for up to 50 epochs using the 
Adamax optimizer and binary cross-entropy loss, with 
classification accuracy on the held-out fold serving as the 
primary evaluation metric. The performance of EEGNet 
when trained on MEWT-based features is summarized in 
Table 1. The training accuracies for the five folds are 
98.90%, 98.83%, 99.04%, 97.96%, and 98.48%, 
respectively, while the corresponding testing accuracies 
are 98.72%, 98.94%, 98.16%, 97.77%, and 98.16%. 

 The mean training and testing accuracies reach 
98.64% and 98.35%, respectively, indicating that the 
network consistently learns the MEWT feature 
representation without severe overfitting and maintains 
very high generalization performance across different 
partitions of the data. In addition to accuracy, the detailed 
per-fold metrics for EEGNet with MEWT are reported in 
Table 2. Across the five folds, accuracy ranges from 
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97.77% to 98.94%, with Precision ranging from 97.70% to 
98.77% and Recall ranging from 97.32% to 99.68%. The 
F1-Score remains high and stable (97.76%–98.98%), 
while Specificity lies between 97.84% and 98.22%. The 
mean values over all folds reach 98.35% for Accuracy, 
98.24% for Precision, 98.45% for Recall, 98.34% for F1-
Score, and 98.24% for Specificity, with an average AUC 
of 99.86%. These results show that the model not only 
achieves excellent overall accuracy but also balanced 
performance in correctly identifying both normal and ASD 
classes. To further characterize the classification behavior 
of the model, the confusion matrices for all five folds are 
presented in Fig. 4. In every fold, the diagonal entries (true 
normal and true ASD) clearly dominate the off-diagonal 
ones, indicating that the EEGNet with MEWT model 
correctly classifies the vast majority of EEG segments for 
both classes. Among these, Fold 2 exhibits the most 
favorable pattern, with only 19 misclassified samples out 
of 1,791 test instances, which corresponds to an error rate 
of approximately 1.1%. In this fold, 846 normal samples 
are correctly predicted as normal, and only 16 are 
erroneously labeled as ASD, while 926 ASD samples are 
correctly identified, and only 3 are predicted as normal. 
Thus, false positives and false negatives are both very 
rare and remain well balanced. 

 

Table 2.  EEGNet MEWT Fold-Level EEG Classification 
Performance Using Five-Fold Cross-Validation Metric  

 

Fold 
Acc 
(%) 

Prec 
(%) 

Rec  

(%) 

F1 
(%) 

Spec 
(%) 

Fold 1 98.72 98.77 98.66 98.72 98.77 

Fold 2 98.94 98.30 99.68 98.98 98.14 

Fold 3 98.16 97.70 98.50 98.10 97.84 

Fold 4 97.77 98.20 97.32 97.76 98.21 

Fold 5 98.16 98.20 98.09 98.15 98.22 

This balanced error distribution is important in the 
medical context (Table 2) because it shows that the model 
does not strongly favor one class over the other; it is able 
to maintain high sensitivity to ASD cases (low miss rate) 
without sacrificing specificity for normal subjects (low 
false-alarm rate). Similar patterns, with slightly higher but 
still small numbers of misclassifications, are observed in 
the other folds, reinforcing the conclusion that the 
EEGNet–MEWT model is stable across different test 
subsets. Overall, the confusion-matrix analysis confirms 
that the proposed model is not only accurate in aggregate 
metrics, but also reliable and well-calibrated in 
distinguishing normal and ASD EEG segments, making it 
suitable as a supportive tool for clinical decision-making 
in ASD detection 

D. Statistical Test (One-Sample t-Test) 

As shown in Table 3, all performance metrics lie in a very 
high range and are consistent across folds. The mean 
accuracy across folds reaches 98.35 ± 0.47%, with 
precision of 98.23 ± 0.38%, recall of 98.45 ± 0.86%, F1-

score of 98.34 ± 0.50%, and specificity of 98.24 ± 0.34%. 
Standard deviations below 1% across all metrics indicate 
that the variation in performance due to data partitioning 
within each fold is relatively small, suggesting that the 
model is stable with respect to changes in the training and 
test subsets. Inferentially, a one-sample t-test (Table 3) 
was conducted to examine whether the mean 
classification performance was significantly above the 
50% chance level (balanced two-class problem). For 
accuracy, the test yielded t(4) = 228.74, p < 0.0001 (one-
tailed), confirming that the mean accuracy of 98.35% is 
well beyond random performance. Similar results were 
obtained for the other metrics: precision (t(4) = 283.45, p 
< 0.0001), recall (t(4) = 125.81, p < 0.0001), F1-score (t(4) 
= 217.93, p < 0.0001), and specificity (t(4) = 320.82, p < 
0.0001). Thus, all performance metrics exhibit highly 
significant differences relative to chance. Taken together, 
these findings indicate that the combination of MEWT as 
a feature extraction method and EEGNet as the classifier 
can discriminate between ASD and normal subjects with 
very high. 

 

Table 3. Fold Averaged Metrics of EEGNet with MEWT 
(5-Fold CV) and One-Sample t-Test.  

Metric 
Mean ± SD 

(%) 
t (4) 

p (one-
tailed vs 

50%) 

Accuracy 98.35 ± 0.47 228.74 < 0.0001 

Precision 98.23 ± 0.38 283.45 < 0.0001 

Recall 98.45 ± 0.86 125.81 < 0.0001 

F1-score 98.34 ± 0.50 217.93 < 0.0001 

Specificity 98.24 ± 0.34 320.82 < 0.0001 

 

 Table 4. EEGNet Benchmark Performance 
Comparison Across Multiple Evaluation Scenarios 

Method 
Mean Test 

Accuracy (%) 

EWT with EEGNet [9] 95.08 

EMD with EEGNet [9] 97.99 

MEWT with EEGNet 

 (proposed Method) 
98.35 

 

IV. Discussion  

In this study, we focused on evaluating a new MEWT with 
an EEGNet pipeline for ASD–EEG classification. The 
proposed model, trained on 16-channel EEG segments 
(2-s windows, 50% overlap, 16 × 1000 input), achieved a 
mean test accuracy of 98.35%, with high and stable 
precision, recall, F1-score, specificity, and AUC across the 
five folds. The confusion matrices show that the MEWT-
based model produces very few, well-balanced false 
positives and false negatives, indicating reliable 
separation between ASD and normal segments. To verify 
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that this performance is genuinely above chance, a one-

                   

(a)                                                                                            (b) 

                     

(c)                                                                                                       (d) 

 

 
       (e) 
 
Fig. 4. Confusion matrices for each fold in 5-fold cross-validation: (a) Fold 1, (b) Fold 2, (c) Fold 3, (d) Fold 

4, (e) Fold 5 

 
 
Fig. 3 Time domain MEWT visualization: (a) raw EEG signal, band-pass filtered signal ASD, and MEWT-
reconstructed signal, (b) five ASD MEWT sub-band, (c) raw EEG signal, band-pass filtered signal NORMAL, 
and MEWT-reconstructed signal, (d) five NORMAL MEWT sub-band 
 

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:melinda@usk.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.313
https://creativecommons.org/licenses/by-sa/4.0/


 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics 
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 56-69, February 2026  

e-ISSN: 2656-8624 

 

Corresponding author: Melinda, melinda@usk.ac.id, Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh, 
Indonesia. 
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.313 
Copyright © 2026 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work 
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).  

 
65 

sample t-test against the 50% chance level (balanced 
two-class setting) was conducted on the five folds. For 
accuracy, the test yielded 𝑡(4) = 228.74with 𝑝 <
0.0001(one-tailed), confirming that the mean accuracy of 

98.35% is far beyond random performance. Similar 
results were obtained for precision (𝑡(4) = 283.45, 𝑝 <
0.0001), recall (𝑡(4) = 125.81, 𝑝 < 0.0001), F1-score 

(𝑡(4) = 217.93, 𝑝 < 0.0001), and specificity (𝑡(4) =
320.82, 𝑝 < 0.0001), showing that all metrics are 

significantly higher than the chance baseline 

For context, the proposed MEWT with the EEGNet 
method is benchmarked against the previous study [9]. on 
the same ASD EEG dataset, which employed EWT and 
EMD-based features with EEGNet under a subject-wise 
5-fold cross-validation scheme. The earlier work reported 
mean test accuracies of 95.08% for EWT with EEGNet 
and 97.99% for EMD with EEGNet [9]. As summarized in 
Table 4, the proposed MEWT with the EEGNet pipeline 
improves the EWT-based baseline by 3.27 percentage 
points (95.08% → 98.35%) and slightly outperforms the 
EMD-based baseline by 0.36 percentage points (97.99% 
→ 98.35%). These gains suggest that multichannel, 
spectrally aligned features produced by MEWT are 
particularly suitable for a compact convolutional 
architecture such as EEGNet on this ASD–EEG dataset 
and that the main limitation of the original EWT pipeline 
lies in its univariate, per-channel implementation. The 
clearer gap between MEWT-EEGNet and EWT-EEGNet 
is mainly attributed to cross-electrode spectral 
consistency. With univariate EWT, sub-band boundaries 
are estimated independently per channel, so the same 
sub-band index can represent slightly different frequency 
content across electrodes, increasing feature variability 
and weakening multichannel learning. In contrast, MEWT 
derives boundaries from the trial-level multichannel 
spectrum and applies a shared filter bank across all 
electrodes, producing spectrally aligned sub-bands that 
better match EEGNet’s multichannel spatial–temporal 
modeling. 

The smaller margin over EMD-EEGNet is consistent 
with both methods being adaptive, but MEWT is typically 
more controlled and repeatable because it enforces a 
fixed five-band partition with multichannel-derived 
boundaries, whereas EMD can exhibit mode variability 
and mode-mixing across segments. We also link this 
mechanism to Fig. 3 (a)–(d), where MEWT reconstruction 
shows a more regular oscillatory waveform and reduced 
transient excursions relative to band-pass outputs, 
supporting a cleaner and more stable input for EEGNet. 
Even so, the scope of the present work is intentionally 
narrow; only the MEWT with the EEGNet pipeline is 
trained and analyzed in detail, and comparisons to EWT 
and EMD-based methods are made at the benchmark 
level using previously published results. Future studies 
will retrain all three feature families (EWT, EMD, and 
MEWT) under exactly the same segmentation and cross-
validation protocol, extend the evaluation to additional 
classifiers (e.g., SVM-RBF or shallow CNNs, and 
transformers), and test the MEWT with the EEGNet 
pipeline on larger and more heterogeneous cohorts to 

assess how well the observed gains carry over to new 
subjects and recording conditions. 

Because the EWT with EEGNet and EMD with 
EEGNet results were taken from previously published 
studies, cross-study comparisons may still be influenced 
by differences in the sample construction stage 
(segmentation/epoching), such as window length, 
overlap, and segmentation rules. To strengthen fairness, 
we explicitly matched the key controllable factors: the 
same dataset, a subject-wise cross-validation protocol, 
the same EEGNet-style classifier family, the same 
number of training epochs, and the same reporting 
metrics. Consequently, the remaining discrepancy 
primarily reflects the impact of segmentation choices in 
the referenced studies; therefore, we interpret this 
benchmark as a contextual comparison rather than a strict 
head-to-head leaderboard [9].   

A similar caution applies to computational efficiency. 

Beyond classification performance, we assessed 

computational efficiency to support the pipeline’s 

suitability for screening in resource-constrained settings 

by reporting model complexity, EEGNet inference latency, 

and the computational cost of the signal-representation 

stage. The EEGNet implementation is lightweight; with a 

16-channel × 1000-sample input, it contains 3,139 

trainable parameters, implying a small memory footprint. 

We emphasize that end-to-end runtime is also affected by 

the segmentation setup: MEWT uses 2-s segments with 

50% overlap (batch size 64), whereas the EWT/EMD 

baselines use 4-s segments with 50% overlap, making 

raw comparisons of total training or inference time 

potentially biased by different segment lengths. 

Therefore, we report more comparable metrics per-

segment inference latency and per-segment 

representation runtime (and throughput at the chosen 

batch size) to enable transparent assessment of 

computational trade-offs and deployment-time cost 

estimation, particularly given that prior EWT/EMD studies 

do not consistently report runtime metrics.  

Although the subject-wise cross-validation results are 
strong, the study can be further strengthened by testing 
the pipeline on larger, more diverse datasets and across 
different recording/segmentation settings to confirm 
generalization better. The subject-wise 5-fold evaluation 
is appropriate for preventing information leakage, but 
additional validation (e.g., external validation) could 
provide a more comprehensive view of inter-individual 
variability.  To reduce degrees of freedom, we used a fixed 
preprocessing configuration (0.5–40 Hz band-pass) and a 
fixed segmentation strategy (2-s windows, 50% overlap) 
across all folds. Although the fold-to-fold variation is small, 
we did not conduct an exhaustive sensitivity analysis 
across learning rates, batch sizes, or MEWT parameters; 
this is now explicitly stated as a limitation, consistent with 
recent discussions on how preprocessing and partitioning 

choices can influence decoding performance [36], [39]. 
Consistent with this, misclassifications in our current 
cohort are infrequent and remain approximately balanced 
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between false positives and false negatives (Table 2 and 
Fig. 4), suggesting no systematic bias toward either class. 
However, the small cohort size limits statistically robust 
subject-level or segment-level error characterization, 
such as determining whether errors cluster in specific 
participants or recur in particular segment types; this will 
be a focused direction for future work as larger multi-site 
datasets become available. In addition, the current 
comparison with EWT and EMD is benchmark-based, as 
in prior studies, so retraining all methods under a fully 
identical protocol would enable a fairer comparison, and 
interpretability analyses could be added to better link the 
results to neurophysiological meaning and practical 
applicability. Additionally, sex distribution and detailed 
diagnostic instruments for the ASD cohort were 
inconsistently documented in the source dataset, limiting 
demographic and clinical subgroup analyses.  

These findings indicate that using MEWT to align 
frequency-band boundaries across channels can improve 
multichannel EEG representations and work effectively 
with compact classifiers such as EEGNet. The 
consistently high performance under subject-wise 
validation also suggests that the proposed pipeline has 
potential as a computationally efficient screening-oriented 
model, particularly in resource-constrained settings [9]. In 
addition, this study highlights the importance of validation 
design, especially subject-wise grouping as a minimum 
standard, to avoid biased evaluation and to better reflect 
real-world performance. Overall, the results motivate 
future work to adopt multichannel 
decomposition/denoising and to test it on larger, more 
diverse cohorts under standardized protocols to support 
the development of more robust and transferable EEG-
based ASD biomarkers [41]. Building a deployable 
screening tool on these findings, several requirements 
extend beyond predictive performance alone. These 
include robust, automated signal-quality assessment and 
artifact detection; standardized acquisition procedures to 
ensure reproducible measurements across operators and 
sites; and clinician-oriented interfaces that present 
outputs in an interpretable and actionable manner. 
Moreover, prospective validation on representative, real-
world cohorts is essential to quantify performance under 
operational conditions, including variation in 
demographics, comorbidities, and recording 
environments [42],[43]. Equally important are ethical, 
regulatory, and governance considerations. Clinically, 
both false reassurance and false alarms carry non-trivial 
consequences, necessitating transparent communication 
of model uncertainty, intended use, and limitations, 
alongside appropriate clinical oversight and escalation 
pathways. Prior to any diagnostic deployment, 
compliance with applicable regulatory frameworks and 
rigorous data-governance provisions covering privacy, 
security, consent, auditability, and ongoing performance 
monitoring would be required to ensure safe and 
responsible use [44].  

 

V. Conclusion  

This study presents an ASD–EEG classification pipeline 
that integrates the Multivariate Empirical Wavelet 
Transform (MEWT) with EEGNet using 16-channel EEG 
recordings, segmented into 2-s windows with 50% 
overlap and resampled to a 16 × 1000 input format. The 
proposed model achieved a mean test accuracy of 
98.35%, with a precision 98.23%, a recall 98.45%, an F1-
score 98.34%, a specificity 98.24%, and an AUC 99.86% 
across five cross-validation folds, while confusion-matrix 
analysis showed consistently low and balanced false 
positives and false negatives. A one-sample t-test against 
the 50% chance level confirmed that all metrics were 
highly significant (p < 0.0001). When compared on the 
same dataset, the MEWT with the EEGNet approach 
outperformed EWT with the EEGNet (95.08%) and slightly 
improved upon EMD with the EEGNet (97.99%), 
demonstrating the effectiveness of multichannel, 
spectrally aligned features for ASDEEG classification. 
Although the results indicate high accuracy, stability, and 
balanced sensitivity–specificity, the study is limited by a 
small, single-site dataset and a single deep-learning 
architecture, suggesting the need for future validation in 
larger cohorts and with additional classifiers. 
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