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ABSTRACT  

The growing complexity of data across domains highlights the need for 
effective classification models capable of addressing issues such as class 
imbalance and feature redundancy. The NASA MDP dataset poses such 
challenges due to its diverse characteristics and highly imbalanced classes, 
which can significantly affect model accuracy. This study proposes a robust 
classification framework integrating advanced preprocessing, optimization-
based feature selection, and ensemble learning techniques to enhance 
predictive performance. The preprocessing phase involved z-score 
standardization and robust scaling to normalize data while reducing the impact 
of outliers. To address class imbalance, the ADASYN technique was employed. 
Feature selection was performed using Binary Harris Hawk Optimization 
(BHHO), with K-Nearest Neighbor (KNN) used as an evaluator to determine the 
most relevant features. Classification models including Random Forest (RF), 
Support Vector Machine (SVM), and Stacking were evaluated using 
performance metrics such as accuracy, AUC, precision, recall, and F1-measure. 
Experimental results indicated that the Stacking model achieved superior 
performance in several datasets, with the MC1 dataset yielding an accuracy of 
0.998 and an AUC of 1.000. However, statistical significance testing revealed 
that not all observed improvements were meaningful; for example, Stacking 
significantly outperformed SVM but did not show a significant difference when 
compared to RF in terms of AUC. This underlines the importance of aligning 
model choice with dataset characteristics. In conclusion, the integration of 
advanced preprocessing and metaheuristic optimization contributes positively 
to software defect prediction. Future research should consider more diverse 
datasets, alternative optimization techniques, and explainable AI to further 
enhance model reliability and interpretability. 
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1. INTRODUCTION  

The quality of software is the most critical aspect of 
software development. It refers to how well a software 
program meets the needs or expectations of users, 
whether explicitly stated or implied. This has a significant 
impact on businesses, as it can either strengthen or harm 
a company’s brand image [1]. The distribution of defects 
across software modules can vary significantly. 
Consequently, applying the same testing effort to all 
modules within a software project may result in excessive 
costs and suboptimal outcomes [2]. Software fault 
prediction represents a systematic methodology that 
incorporates a range of framework, techniques, and 
assessment criteria [3]. To address the task of software 

defect prediction, researchers have employed statistical 
analysis, machine learning techniques, and, more 
recently, deep learning approaches [4]. Identifying 
defective modules is a critical step in test planning. This 
necessity has driven the development of automated 
software defect prediction (SDP) processes that leverage 
metrics derived from historical data. As a result, defect 
prediction using machine learning techniques has 
become a prominent research focus, aiming to reduce 
manual effort in identifying various types of defects in 
software applications [5]. Early defect prediction enables 
timely rectification, contributing to the delivery of 
maintainable software. It allows managers to allocate 
testing resources effectively, developers to focus on 
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auditing defect-prone code, and testers to prioritize their 
efforts and resources based on defect-proneness data [6]. 

The performance of predicting software issues is 

influenced through how defective data features are 

represented [7]. Consequently, it is crucial to eliminate 

non-essential features during the development of the 

software framework, as these features can introduce 

noise, increase computational complexity, and reduce the 

overall accuracy of the model [8]. Feature selection aims 

to improve the accuracy of Software Defect Prediction 

(SDP) models by eliminating irrelevant features, thereby 

reducing the computational complexity and execution 

time of these algorithms. The three primary approaches 

to feature selection are the wrapper method, the 

embedded method, and the filter method. The filter 

technique evaluates and assigns a score to each feature 

in the dataset. In contrast, the wrapper technique utilizes 

classifiers to assess the outcomes of feature selection [9]. 

Among the different methodologies, wrapper-based 

techniques stand out as the most widely adopted. 

Extensive research has revealed that these techniques 

can effectively minimize the number of features while 

improving diagnostic accuracy. However, they are not 

without their difficulties. Typically, these methods utilize 

heuristic algorithms for feature selection (FS), which can 

lead to increased computational demands. Moreover, 

heuristic algorithms often exhibit sensitivity to their 

parameter settings, which can cause fluctuations in 

performance. To address these issues, a new approach 

known as the Binary Harris Hawks Optimization (BHHO) 

algorithm has been developed. [10].  

Harris Hawks Optimization (HHO) is a recently 

developed swarm-based algorithm and has gained 

significant popularity in recent years. It simulates the 

cooperative hunting behavior of Harris hawks to solve 

optimization problems effectively [11]. Among the 

mentioned algorithms, the HHO algorithm is a novel 

metaheuristic approach developed by Heidari et al. [12] in 

2019, inspired by the cooperative hunting behavior of sky 

predators. Due to its effective simulation of the hawks' 

chasing strategies, this method demonstrates highly 

competitive performance on certain optimization 

problems. 

Each time a new subset of features is selected, it is 

used to train the model. The trained model is then tested 

on a separate test set to directly identify the optimal 

feature subset from all available features in the dataset 

[13]. A Software Defect Prediction (SDP) model generally 

consists of three main components: machine learning 

algorithms to process and analyze data, soft computing 

techniques to address uncertainty and complex 

relationships, and software metrics that represent 

measurable attributes of the code. These metrics are 

used to train the machine learning algorithms, enabling 

them to detect patterns and predict potential defect-prone 

areas in the code [14]. The process of building a metrics 

model for software involves collecting metric features to 

predict defects. However, this approach is often 

ineffective for projects or versions that vary significantly. 

To address this limitation, researchers have introduced 

change metrics to improve the accuracy of defect 

prediction. Despite its advantages, this technique is less 

suitable for complex systems in large-scale industries, as 

it tends to be time-consuming and inefficient. Predicting 

defects early in the software implementation process 

helps reduce both implementation and computation costs 

[7-10]. 

Forecasting software defects is crucial in the process 

of Software Development by identifying modules that 

need thorough testing. Machine learning (ML) techniques, 

particularly supervised and unsupervised learning, are 

widely applied for prediction, along with other approaches 

like semi-supervised and reinforcement learning [15]. 

Among these, classification methods are the most 

commonly used for software defect prediction [16]. To 

improve accuracy, these methods are often integrated 

with feature selection processes, which focus on 

identifying the most relevant features while removing 

those that negatively impact performance.  

Researchers have highlighted the issue of class 

imbalance adversely impacts the forecasting accuracy of 

software fault prediction models. This situation arises 

when there is an imbalance in the dataset, characterized 

by a notable difference in the quantity of data between the 

majority and minority classes [17]. In many cases, class 

imbalance leads to overfitting, rendering these models 

unreliable. To mitigate this issue, researchers have 

proposed primary solutions such as data selection, 

combined techniques, and expense-sensitive 

assessment [18]. Researchers have explored various 

approaches to solve the class disparity issue. Singh, 

Misra, and Sharma [19] carried out research on 

automating bug severity prediction through summaries 

derived from bug metrics. To handle the inherent class 

imbalance in the generated bug dataset, they employed 

ensemble methods, specifically Voting and Bagging. Their 

findings demonstrated that ensemble methods 

outperformed single classifiers, indicating that ensemble 

approaches are effective in dealing with class imbalance 

issues. The ensemble learning model is constructed by 

combining several machine learning classifiers to 

enhance predictive performance [20]. A substantial body 

of empirical research conducted over the past decade 

indicates that ensemble methods consistently achieve 

higher classification accuracy than their individual 

classifier counterparts [21]. 

The previous study by Mohammad et al. [14], the 

authors developed a multi-objective hybrid approach that 

integrates Hawk Optimization with adaptive synthetic 

sampling techniques. This model was assessed using 

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics 
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025  

e-ISSN: 2656-8624 

 

 
Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science, 
Banjarbaru, Indonesia.  
https://doi.org/10.35882/f2140043 
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an 
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).  

190 

various performance metrics, including Area Under the 

Curve (AUC), precision, recall, and F-measure. Notably, 

when applied to a healthcare dataset, the model achieved 

an impressive AUC score of 0.992 and a classification 

accuracy of 0.99, demonstrating its effectiveness in 

addressing the challenges of defect prediction in 

healthcare systems. The primary objective of this 

research is to identify pertinent features that can 

effectively predict software defects within healthcare 

systems, alongside exploring machine learning 

algorithms that enhance the accuracy of software defect 

prediction (SDP). The main contributions of this study are 

outlined as follows: 

1. The proposed methodology demonstrates 

competitive accuracy in Software Defect 

Prediction by combining advanced preprocessing, 

metaheuristic-based feature selection using 

Binary Harris Hawk Optimization (BHHO), and 

ensemble learning techniques. 

2. The application of BHHO for feature selection 

enables the identification of relevant features while 

reducing redundancy, which contributes to 

improving the model’s ability to generalize and 

reducing overfitting risks across diverse datasets. 

3. The framework’s effectiveness across multiple 

NASA MDP datasets shows its potential for 

enhancing defect prediction tasks. However, 

findings also emphasize that model selection and 

performance vary with dataset characteristics, and 

should be validated with statistical significance 

testing. 

This study is organized as follows: Section II provides 

an overview of the dataset utilized and the proposed 

methodologies. Section III presents the results of the 

proposed methods, focusing on accuracy and AUC, along 

with optimization parameters such as precision, recall, 

and F1-measure. Section IV offers an interpretation of the 

results, comparing them with findings from other studies 

while also addressing any limitations encountered. Finally, 

Section V concludes the study by summarizing the 

objectives, key findings, and suggestions for future 

research directions. 

 

2. MATERIALS AND METHOD 

The proposed method in this research begins with the 
utilization of the NASA MDP dataset. Initially, 
preprocessing is conducted, which includes data 
transformation through z-score standardization, ensuring 
that all values have a mean of 0 and a standard deviation 
of 1. This step reduces the influence of dimensionality and 
plays a crucial role in outlier detection, as Z-scores 
significantly distant from 0 may indicate the presence of 
outliers. Following this, scaling techniques such as robust 
scaling are applied to center the data around zero and 
adjust it to a more consistent scale, thereby minimizing 

the impact of extreme values on the results. 
Subsequently, sampling techniques like ADASYN are 
employed to address class imbalance, enhancing the 
classifier's performance. Then, Feature selection 
performed using a wrapper method, specifically 
employing binary Harris Hawk Optimization (BHHO) with 
KNN as the evaluator for feature selection. The log loss 
function is utilized as the objective function in the binary 
HHO process. The model is subsequently tested using 
various classification and ensemble algorithms, including 
Random Forest (RF), Support Vector Machine (SVM), 
and Stacking. Finally, the model's performance is 
evaluated using metrics such as Area Under the Curve 
(AUC) and accuracy. Fig. 1 illustrates the research flow 
adopted in this study. 

 

A. Dataset 

The prediction of software defects is conducted by 

leveraging datasets from previous software projects [22]. 

One of the most frequently utilized datasets is the National 

Aeronautics and Space Administration (NASA) dataset, 

which is well-known and widely used in the development 

of defect prediction models due to its public accessibility. 

In total, dataset used for NASA benchmarks comprises 13 

distinct software projects, each representing a specific 

software system or subsystem developed by NASA. This 

dataset includes a wide range of instances, from 127 to 

9,277, and features 20 to 40 metrics that focus on 

identifying defects and analyzing static code. 

Furthermore, a bug tracking system is utilized to keep 

 

Fig. 1. Flowchart illustrating the research 
methodology based on the proposed approach. 
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track of the number of errors for each instance. The 

quality of the software is closely tied to key static code 

metrics, which encompass aspects such as size, 

readability, and complexity. However, this dataset 

presents challenges related to data imbalance, where the 

quantity of non-defective instances greatly exceeds that 

of the faulty ones, along with those presence of noise 

disturbances. This imbalance poses a common 

challenge, as prediction outcomes tend to be biased 

towards the non-defective class. To address this issue, it 

is essential to adjust prediction techniques by integrating 

or combining other algorithms [23].   

Two class labels from NASA MDP dataset comprises: 
“Y” (representing defective) and “N” (representing non-
defective). In the preprocessing phase, these categorical 
labels were transformed into numeric values, where Y is 
encoded as 1 and N is encoded as 0 [24]. This conversion 
facilitates the application of various machine learning 
algorithms that require numerical input for effective 
processing and analysis. The version of the NASA MDP 
dataset utilized in this research is D'', sourced from 
(https://github.com/klainfo/NASADefectDataset). The 
data volume for each dataset is presented in Table 1.  

 

Table 1. Detailed information regarding the NASA 
MDP Dataset, including its characteristics and 
relevant metrics. 

Dataset 

Number 

of 

features 

Sample 

sizes 

Number 

of 

Defects 

Defects 

(%) 

CM1 38 327 42 12.8 

JM1 22 7720 1612 20.8 

KC1 22 1162 294 25.3 

KC3 40 194 36 18.5 

MC1 38 1988 46 2.3 

MC2 40 124 44 35.4 

MW1 38 253 27 10.7 

PC1 38 705 61 9.7 

PC2 37 722 16 2.2 

PC3 38 1077 134 12.4 

PC4 38 1270 176 13.8 

PC5 39 1694 458 27.0 

In this study, the labels in the MC1 dataset were 
transformed, with the designation "Y" converted to "1" and 
"N" converted to "0." This modification is illustrated in 
Table 2 and Table 3. 

B. Data Transformation 

This process is crucial to ensure that the data used in the 

model is high quality, thereby enabling accurate results. 

By applying appropriate transformations, the impact of 

outliers can be minimized, distributions can be 

normalized, and the model's performance in predicting 

defects can be effectively enhanced [25]. Before 

preprocessing, the data was split in a 70:30 ratio, with 

70% allocated for training and 30% for testing, using 

random_state=42 to ensure reproducibility. Then the 

technique standardizes feature values to have a mean of 

0 and a standard deviation of 1 using the formula as 

shown in Eq. (1). 

𝑋𝑛𝑒𝑤 = 𝑋 − 𝑋̅

𝜎
 (1) 

Xnew represents the standardized value indicating how far 

the original value X is from the mean 𝑋̅ in terms of 

standard deviation σ. This is achieved by subtracting the 
mean from the original value and dividing by the standard 
deviation, resulting in a value that reflects the relative 
deviation from the mean. This transformation is crucial for 
standardizing data, ensuring a mean of 0 and a standard 
deviation of 1, and is effective for detecting outliers, as Z 
values far from 0 may indicate their presence. In the 
implementation, Z-scores were calculated using the 
stats.zscore function from the SciPy library. To identify 
and handle outliers, a threshold of 2 was set, meaning any 
data point with a Z-score greater than this threshold is 
considered an outlier. Consequently, an outlier mask was 
created to filter out these points, ensuring that only data 
within the threshold is retained for training. This approach 
is used due to its effectiveness in standardizing the 
dataset, minimizing the impact of outliers, and ensuring 
that the features are on a comparable scale, which 
ultimately enhances the model's predictive performance. 

 

C. Scalling Techniques 

The performance of machine learning models is 

influenced by various factors, including the scale of 

features in the dataset. Feature scale differences can 

cause inaccuracies by favoring larger values.

Table 2. Overview of the CM1 Dataset Labels Before Preprocessing: Original Categorical Labels and Their 
Corresponding Numeric Transformations 

id LOC_BLANK BRANCH_COUNT … NUM_UNIQUE_OPERATORS LOC_TOTAL label 

0 3 1 … 5 17 N 

1 3 3 … 14 14 N 

2 1 5 … 9 13 N 

… … … … … … … 

7718 9 35 … 38 60 N 

7719 3 15 … 17 30 N 
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Table 3. Overview of the CM1 Dataset Labels After Preprocessing: Numeric Representations of Categorical 
Labels Following Transformation 

id LOC_BLANK BRANCH_COUNT … NUM_UNIQUE_OPERATORS LOC_TOTAL label 

0 3 1 … 5 17 0 

1 3 3 … 14 14 0 

2 1 5 … 9 13 0 

… … … … … … … 

7718 9 35 … 38 60 0 

7719 3 15 … 17 30 0 

To address this, scaling techniques are employed to 
ensure all features have a uniform range of values [26]. 
The Robust Scaler minimize the impact of outliers by 
centering data around the median (the second quartile, 
Q2(x)) and scaling based on the interquartile range. The 
interquartile range is the difference between the first 
quartile Q1(x) and the third quartile Q3(x), shown in the 
Eq. (2). 

𝑥′𝑖 =
𝑥𝑖 − 𝑄2(𝑥)

𝑄3(𝑥) − 𝑄1(𝑥)
  (2) 

This method standardizes 𝑥′𝑖 by subtracting the median 

Q2(x) from the original value xi and dividing by the 
interquartile range. This centers the data around the 
median and adjusts the scale to be more consistent, 
reducing the influence of extreme values. ppp In the 
implementation, the RobustScaler from the Scikit-learn 
library was initialized with the following parameters: 
with_centering set to True to center the data around the 
median, with_scaling set to True to scale the data to the 
interquartile range, and the quantile_range set to the 
default of (25.0, 75.0) to calculate the IQR. The copy 
parameter was set to True, ensuring that a copy of the 
data is created during scaling, while unit_variance was set 
to False, meaning the data would not be scaled to achieve 
a variance of 1 for normally distributed features. This 
approach is used due to its ability to minimize the impact 
of outliers by centering the data around the median and 
scaling based on the interquartile range, ensuring that the 
model remains robust and accurate even in the presence 
of extreme values. 

 

D. Sampling Techniques 

The performance of classifiers is influenced by various 

factors, including the number of samples and the types of 

classes analyzed. Data imbalance occurs when the 

minority class has significantly fewer instances than the 

majority class, leading to challenges for machine learning-

based classifiers and diminishing their overall 

effectiveness. Numerous studies have explored this issue 

and proposed solutions, with Bowyer identifying two 

primary approaches: data-based and algorithm-based 

methods [9]. The data-based approach focuses on 

balancing class distribution through resampling 

techniques, which can involve over-sampling the minority 

class or under-sampling the majority class, either 

randomly or systematically. Various methods have been 

suggested to address imbalanced data, including 

ADASYN, SMOTE, and Random Oversampling [27]. 

Adaptive Synthetic Sampling (ADASYN) is a method 

aimed at addressing dataset imbalance to improve 

classifier performance (Algorithm 1). It synthesizes 

minority class samples based on their distribution in the 

training dataset, focusing more on difficult-to-learn 

samples and less on easier ones. The approach 

determines a probability distribution to generate additional 

minority class samples, resulting in a more balanced 

dataset [14]. This mechanism ensures that the distribution 

of new samples reflects the existing data patterns, 

particularly in the minority class, thereby enhancing class 

balance without losing important information. The 

parameters used in the ADASYN implementation include 

sampling_strategy ='auto', which automatically targets the 

majority class for resampling, ensuring a balanced class 

distribution. Additionally, random_state=42 is set to 

control the randomization of the algorithm, allowing for 

reproducible results. The n_neighbors parameter is set to 

5, indicating that five nearest neighbors will be used to 

define the neighborhood of samples for generating 

synthetic samples. This configuration is chosen to 

enhance the model's ability to learn from the minority 

class, thereby improving overall classifier performance 

while maintaining the integrity of the data distribution. The 

following provides a more detailed explanation of how the 

ADASYN technique is implemented in the pseudocode 

presented. 

E. Feature Selection 

In classification, techniques for feature selection are 
primarily grouped into three categories: filter methods, 
wrapper methods, and embedded methods [28]. Key 
differences include whether selection is performed 
separately or integrated with the learning algorithm, the 
evaluation metrics used, computational complexity, and 
the ability to detect redundancy and feature interactions. 
Filter methods evaluate features based on their 
relationships and are generally faster, while wrapper 
methods use learning algorithms for evaluation and tend 
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to be more accurate [29]. Feature selection (FS) 
algorithms are divided into two main categories: exact 
algorithms and meta-heuristic search algorithms [9]. 
Meta-heuristic algorithms typically outperform exact 
methods, especially for complex problems. They are 
further classified into single-solution algorithms, such as 
Tabu Search [30], which emphasize exploitation, and 
population-based algorithms, like Harris Hawks 
Optimization (HHO) [31], which focus on exploration. 

While population-based algorithms explore broader 
search areas and yield more accurate results, single-
solution algorithms generally execute faster. Binary 
encoding is a simple approach for FS, where 0 indicates 
a feature is not selected and 1 indicates it is selected. The 
application of feature selection (FS) algorithms will select 
m features from the original n features, where m ≤ n.  

 

Algorithm1.  Adaptive Synthetic 

Input: 

• Dataset S1 with n samples vi and labels wi (0 for minority class, 1 for majority class). 
Output: 

• New synthetic data. 
Steps: 

1. Calculate Class Imbalance: 

• Find the ratio of minority to majority samples. 
2. Determine Total Samples to Synthesize: 

• Calculate S = (n1 - n2) * β, where n1 is the number of minority samples, n2 is the number of majority 
samples, and β is a coefficient. 

3. For Each Minority Sample vi: 

• Identify the K nearest neighbors. 

• Calculate the ratio ri = Δi / K, where Δi is the number of observations in the K-nearest neighbors. 

• Normalize ri to create a probability distribution: ri = ri / Σri. 

• Compute si = ri * S, indicating the total synthetic samples needed for each minority sample vi. 
4. Generate Synthetic Samples: 

• For m = 1, 2, …, si: 

• Randomly select a sample vm from the K-nearest neighbors of vi. 

• Create a synthetic sample vq using the formula: vq = vi + (vi - vm). 
5. End of Algorithm. 

The Harris Hawks Optimizer (HHO) was selected over 
other metaheuristic algorithms due to its innovative 
design that incorporates two distinct exploration phases 
and four exploitation phases, enhancing its ability to 
navigate complex search spaces effectively. While 
numerous well-established algorithms such as the Whale 
Optimization Algorithm (WOA) [32], Dragonfly Algorithm 
(DA) [33], Grasshopper Optimization Algorithm (GOA) 
[34], Grey Wolf Optimizer (GWO) [35], Multi-Verse 
Optimizer (MVO) [36], and Moth-Flame Optimizer (MFO) 
[37] demonstrate robust search capabilities, HHO's 
unique structure allows for a more refined balance 
between exploration and exploitation. This capability 
enables HHO to achieve superior performance in solving 
diverse mathematical and engineering problems, making 
it a compelling choice for applications requiring high-
quality solutions within reasonable computational 
timeframes. 

 

F. Harris Hawk Optimization 

Harris Hawk Optimization (HHO) is a novel optimization 
algorithm inspired by the hunting dynamics between 
hawks and rabbits. Its mathematical foundation allows it 
to effectively tackle various constrained and 
unconstrained problems. The algorithm updates search 
agents through two exploration phases and four 

exploitation phases [38]. Harris Hawk Optimization (HHO) 
was initially designed to operate in continuous search 
spaces. However, real-world problems like feature 
selection require binary search spaces. To address this, 
the algorithm has been efficiently reformulated to function 
in binary spaces. In several studies, a two-phase 
binarization technique has been employed to present a 
binary variant of HHO, referred to as Binary Harris Hawk 
Optimization (BHHO) [39]. Wrapper-based feature 
selection using Binary Harris Hawk Optimization (BHHO) 
is combined with the K-Nearest Neighbor (KNN) classifier 
as the evaluator with default parameters (n_neighbors=5) 
as the evaluator for HHO. KNN is selected for its simplicity 
and common use as a non-parametric classification 
technique, and it has shown competitive performance in 
various studies compared to other feature selection 
methods [38]. BHHO is specifically designed to handle 
binary problems, making it ideal for scenarios where the 
solution requires a binary decision, such as selecting or 
rejecting features. When adapting metaheuristic 
algorithms for optimization, two key aspects are crucial: 
solution representation and the objective function. 

Solution Representation: In feature selection (FS), each 

feature can be either selected or not, represented as a 

binary vector X={x1,x2,…,xN}, total count of features 

represent with N. 
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Target function: Guiding the search process is crucial by 

assessing candidate solutions according to their quality. 

The main aim of feature selection (FS) is to minimize the 

count of chosen features while improving classification 

effectiveness. This research, a single-target HHO 

algorithm is utilized, with the objective function specified 

as Log Loss, as illustrated in Eq. (3). 

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 =  −
1

𝑁
∑[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦) log(1 − 𝑝𝑖)]

𝑁

𝑖=1

 (3) 

N represents the total number of samples, yi is the actual 
class label (0 or 1), and pi is the predicted probability of 
the class. Log Loss measures the performance of the 
model, providing a lower value for better classification 
accuracy. Python library for performing feature selection 
using a variety of nature inspired wrapper algorithms is 
taken from (https://github.com/jaswinder9051998/zoofs). 
In this research, the parameters proposed by the HHO 
algorithm, specifically a population size of 10 and 30 
iterations by previous analyses [14] have indicated that 
this combination yields the optimal performance for the 
predictive model.  

 

G. Classification 

Random Forest (RF) and Support Vector Machine (SVM) 
are the two key classifiers employed to differentiate 
between software modules with defects and those 
without. These methodologies are integral to machine 
learning (ML) and demonstrate substantial effectiveness 
in classification performance. Their primary goal is to 
identify patterns that indicate specific classes, connecting 
each data instance to the existing dataset [40]. 

 

1. Random Forest 

Random Forest (RF) is an ensemble method that consists 
of multiple decision trees, combining their predictions to 
improve accuracy and robustness [41]. It effectively 
handles datasets with many irrelevant attributes by 
selecting the most informative ones for classification. RF 
constructs decision trees by randomly sampling data 
subsets and mapping them to randomly chosen feature 
subspaces [42]. Random Forest is represented in Eq. (4). 

{𝐷𝑇(𝑥, 𝜃𝑘)} 
𝑇

𝑘 = 1
 (4) 

In this equation, the k-th decision tree is trained with input 
data x and random parameters 𝜃𝑘, which include a subset 

of data from bagging and a random subset of features at 
each node. By building T independent decision trees, 
predictions are combined using majority voting for 
classification or averaging for regression, improving 
model accuracy and reducing the risk of overfitting. In this 
Random Forest implementation, the parameters used are 
n_estimators=1000 [43], which specifies the number of 
trees in the forest to enhance predictive accuracy. 
Additionally, max_depth=None allows the trees to grow 
until all leaves are pure, ensuring that the model captures 
the complexity of the data. The parameter 

min_samples_leaf=1 is also set, which specifies the 
minimum number of samples required to be at a leaf node. 
This configuration is designed to optimize the model's 
performance by balancing accuracy and robustness. 

2. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised machine 
learning algorithm used for both classification and 
regression tasks [44]. SVM creates an optimal hyperplane 
to efficiently differentiate data sample into separate 
classes by transforming them into an expanded-
dimensional space. This method is especially effective for 
two-class classification applications with significant 
dimensionality, rendering it useful for applications such as 
Software Defect Prediction (SDP). SVM's ability to handle 
complex, non-linear data and maximize the margin 
between classes enhances its generalization capabilities, 
contributing to its widespread use in fields such as image 
processing and bioinformatics. Support Vector 
Classification (SVC) is a classification method that utilizes 
the Support Vector Machine (SVM) algorithm to separate 
data into classes. It can employ various kernels, including 
linear, polynomial, and radial basis function (RBF) 
kernels. RBF SVC is particularly effective for non-linearly 
separable data, as it measures the distance between data 
points and class centers, allowing for complex decision 
boundaries. Its strengths include handling intricate 
patterns, flexibility in adjusting parameters γ and C, and 
strong performance in applications such as text, image, 
and medical data analysis. The RBF kernel equation is 
represented in Eq. (5). 

𝐾(𝑥, 𝑦) = 𝑒−𝛾‖𝑥−𝑦‖2
 (5) 

γ is a parameter that controls the influence of a single 
training example. A small value of γ results in smoother 
decision boundaries, while a larger value leads to sharper 
decision boundaries. This parameter plays a crucial role 
in determining the model's flexibility and its ability to 
generalize from the training data. In the implementation 
we used the default parameters used include C=1.0, 
which serves as the regularization parameter, controlling 
the trade-off between achieving a low training error and a 
low testing error. The kernel='rbf' is specified as the kernel 
type, which is particularly effective for handling non-linear 
relationships in the data. Additionally, random_state=42 is 
set to ensure reproducibility of results by controlling the 
randomness in the algorithm. The probability=True 
parameter is also included, allowing the model to output 
probability estimates for the predictions. This 
configuration is designed to optimize the model's 
performance while providing reliable probability estimates 
for classification tasks. 

3. Stacking 

Stacking is a heterogeneous ensemble model that 
combines multiple base classifiers through a meta-
classifier to produce a final prediction model [45]. The 
base classifiers use different learning algorithms and are 
trained on the entire dataset, while their outputs serve as 
the training data for the meta-classifier to build the final 
model. In the implementation, the estimators parameter is 
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defined as a list of tuples, where each tuple consists of a 
string (name) and an estimator instance. For example, the 
base estimators include a RandomForestClassifier with 
random_state=42 and an SVC with probability=True and 
random_state=42. This combination allows for diverse 
learning algorithms to be stacked together. The 
final_estimator parameter is set to a classifier that will be 
used to combine the outputs of the base estimators, 
effectively creating a robust ensemble model. This 
configuration enhances the model's predictive 
performance by leveraging the strengths of multiple 
classifiers. 

 

H. Evaluation Metrics 

Assessment metrics such as accuracy, specificity, 

sensitivity, precision, and ROC-AUC are integral to 

prediction and classification. This study focuses on 

analyzing the suggested framework through accuracy and 

AUC values, utilizing ROC-AUC, which is frequently 

applied in the context of software defect prediction. AUC 

useful in class imbalance situations, providing a 

comprehensive view of model performance across 

thresholds. The calculation of AUC is based on the ratio 

of false positive rates to true positive rates. Accuracy 

serves as a measurement that effectively differentiates 

between defective and non-defective software 

components. It is computed as the ratio of true positives 

to true negatives across all instances, as illustrated in Eq. 

(6).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(6) 

TP (True Positive) and TN (True Negative) represent 

correct predictions for positive and negative classes, 

while FP (False Positive) and FN (False Negative) 

indicate incorrect predictions. Accuracy measures the 

model's effectiveness in classifying data, ranging from 0 

to 1, with 1 indicating perfect predictions. AUC (Area 

Under the Curve) assesses the model's capability to 

distinguish between true positive rates and false positive 

rates across different thresholds. A higher AUC value 

indicates better model performance in distinguishing 

between classes [35]. The AUC is represented in Eq. (7).  

𝐴𝑈𝐶 =  
1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅

2
 

(7) 

True Positive Rate (TPR) measures the proportion of 
correct positive predictions, while False Positive Rate 
(FPR) indicates incorrect negative predictions. AUC 
ranges from 0 to 1, with 1 representing perfect 
performance and 0.5 indicating random predictions. Key 
optimization parameters include precision, recall, and F1-
measure. The F1 Score is selected as an evaluation 
metric because it effectively balances precision and recall, 
making it suitable for imbalanced datasets. Precision 
measures the accuracy of positive predictions, while 
recall indicates the model's ability to identify all relevant 
positive instances. Unlike accuracy, the F1 Score 

accounts for both false positives and false negatives, 
providing a clearer picture of model performance [46]. 
Furthermore, in the calculations for AUC and F1-score, 
precision reflects how accurately positive instances are 
identified among all predicted positives, highlighting the 
relevance of using the F1 Score in contexts with uneven 
class distributions. 

 

3. RESULTS 

This section presents the results of the proposed 
framework in a clear and organized manner, using tables 
and figures to effectively illustrate key findings. The 
evaluation was conducted using the NASA MDP datasets 
with the proposed framework implemented in Jupyter 
Notebook and tested on a machine with a Ryzen 5 4600H 
CPU @ 3.00GHz and 16 GB DDR4 RAM. Performance 
was measured using accuracy, precision, recall, F1-
score, and AUC metrics. 

To statistically validate the observed differences in 
model performance, this study employs independent 
samples t-tests. The primary purpose of the t-test is to 
determine whether the differences in performance 
metrics—particularly accuracy and AUC—between 
classifiers are statistically significant or could have 
occurred by chance. This allows for a more rigorous and 
objective evaluation of model effectiveness beyond 
simple numerical comparisons. By applying this test, the 
study avoids overclaiming performance advantages and 
strengthens the reliability of its conclusions. 
 

A. Selected Features Using BHHO 

Table 4 displays the number of features selected by the 
Binary Harris Hawk Optimization (BHHO) from each 
dataset. These selected features are considered most 
relevant to defect prediction. 

Table 4. Displays the features that have been selected 
for analysis, highlighting their significance and 
relevance to the study. 

Dataset Features Feature Selection BHHO 

CM1 38 26 

JM1 22 10 

KC1 22 14 

KC3 40 26 

MC1 38 26 

MC2 40 22 

MW1 38 21 

PC1 38 21 

PC2 37 22 

PC3 38 25 

PC4 38 25 

PC5 39 30 

The features repeatedly selected across datasets include 
metrics such as CYCLOMATIC_COMPLEXITY, 
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HALSTEAD_EFFORT, HALSTEAD_ERROR_EST, 
LOC_COMMENTS, and LOC_TOTAL. Their frequent 
occurrence indicates their relevance in predicting 
software defects. For instance, the presence of 
LOC_COMMENTS suggests the influence of code 
documentation on software quality. 
 

B. Accuracy and AUC Performance 

Table 5 provides accuracy and AUC values for three 
models: Random Forest (RF), Support Vector Machine 
(SVM), and Stacking. These models were applied after 
the BHHO-based feature selection process.  

Table 5. Results of various classification algorithms 
based on the proposed approach are presented, 
showcasing their performance and effectiveness in 
the analysis. 

Data RF SVM Stacking 

CM1 
Accuracy 0.961 0.868 0.961 

AUC 0.982 0.979 0.987 

JM1 
Accuracy 0.874 0.603 0.875 

AUC 0.942 0.648 0.940 

KC1 
Accuracy 0.834 0.629 0.837 

AUC 0.894 0.675 0.893 

KC3 
Accuracy 0.902 0.902 0.927 

AUC 0.974 0.988 0.990 

MC1 
Accuracy 0.966 0.981 0.998 

AUC 1.000 0.998 1.000 

MC2 
Accuracy 0.952 0.810 0.857 

AUC 0.955 0.891 0.945 

MW1 
Accuracy 0.966 0.862 0.931 

AUC 0.996 0.926 0.987 

PC1 
Accuracy 0.976 0.940 0.964 

AUC 0.994 0.990 0.992 

PC2 
Accuracy 0.956 0.962 0.978 

AUC 0.997 0.991 0.999 

PC3 
Accuracy 0.952 0.865 0.961 

AUC 0.994 0.952 0.994 

PC4 
Accuracy 0.915 0.872 0.918 

AUC 0.970 0.935 0.973 

PC5 
Accuracy 0.816 0.749 0.810 

AUC 0.907 0.821 0.902 

Stacking and RF consistently achieved the highest 

performance. SVM performed notably poorer in datasets 

such as JM1, KC1, and PC5, possibly due to suboptimal 

parameters or kernel choice. Adjusting model parameters 

through grid search or random search may help identify 

optimal SVM parameters.  

 

C. Evaluation of Precision, Recall, and F1-Measure 

Table 6 presents the precision, recall, and F1-measure of 

the three classifiers. These metrics further confirm the 

effectiveness of the proposed method with selected 

features. 

Table 6. The effectiveness and performance of the 

optimization parameters were thoroughly evaluated 

and analyzed in this study. 

Data Precision Recall 
F1-

measure 

CM1 
RF 0.952 0.976 0.964 

SVM 0.804 1 0.891 
Stacking 0.952 0.976 0.964 

JM1 
RF 0.901 0.855 0.877 

SVM 0.639 0.560 0.597 
Stacking 0.900 0.857 0.878 

KC1 
RF 0.860 0.806 0.832 

SVM 0.634 0.650 0.642 
Stacking 0.861 0.812 0.836 

KC3 
RF 1 0.810 0.895 

SVM 0.905 0.905 0.905 
Stacking 0.95 0.905 0.927 

MC1 
RF 1 0.993 0.996 

SVM 0.965 1 0.982 
Stacking 0.996 1 0.998 

MC2 
RF 1 0.909 0.952 

SVM 0.769 0.909 0.833 
Stacking 0.833 0.909 0.870 

MW1 
RF 0.966 0.966 0.966 

SVM 0.889 0.828 0.857 
Stacking 0.903 0.966 0.933 

PC1 
RF 0.974 0.974 0.974 

SVM 0.893 0.987 0.938 
Stacking 0.949 0.974 0.961 

PC2 
RF 0.940 0.963 0.952 

SVM 0.921 1 0.959 
Stacking 0.953 1 0.976 

PC3 
RF 0.935 0.962 0.948 

SVM 0.783 0.971 0.867 
Stacking 0.952 0.962 0.957 

PC4 
RF 0.898 0.936 0.917 

SVM 0.807 0.979 0.885 
Stacking 0.904 0.936 0.920 

PC5 
RF 0.754 0.885 0.814 

SVM 0.701 0.782 0.739 
Stacking 0.749 0.878 0.808 

 

D. Visualization of Results 

Fig 2 illustrates the accuracy and AUC across 

experiments: 
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(a) 

 
(b) 

Fig. 2. Evaluation of Accuracy and AUC outcomes for 
each experiment: (a) Accuracy metrics for all 
experiments, (b) AUC metrics for all experiments. 

 

E. Statistical Analysis of Model Performance 

Table 7 and Table 8 show the accuracy and AUC scores 

obtained across experiments for each classification 

model. To further validate the observed performance 

differences, a paired t-test was conducted between 

models. 

Table 7. Statistical comparison of accuracy between 

classification models thoroughly evaluated and 

analyzed in this study. 

Model 

Comparison 
t-Statistic p-Value 

Significant 

(p < 0.05) 

RF vs SVM 2.231 0.036 Yes 

RF vs 

Stacking 
0.188 0.853 No 

SVM vs 

Stacking 
-2.079 0.049 Yes 

Table 8. Statistical comparison of AUC between 

classification models thoroughly evaluated and 

analyzed in this study. 

Model 

Comparison 
t-Statistic p-Value 

Significant 

(p < 0.05) 

RF vs SVM 1.834 0.080 No 

RF vs 

Stacking 

0.017 0.987 No 

SVM vs 

Stacking 

-1.820 0.082 No 

The test compared the accuracy and AUC values across 

the Random Forest (RF), Support Vector Machine (SVM), 

and Stacking models over twelve datasets. Results 

showed that, in terms of accuracy, the differences 

between RF and SVM (p = 0.036) and between SVM and 

Stacking (p = 0.049) were statistically significant at the 5% 

level. These findings indicate that both RF and Stacking 

significantly outperformed SVM. However, no significant 

difference was found between RF and Stacking (p = 

0.853), suggesting their accuracies were statistically 

comparable. Regarding AUC, while RF and Stacking 

generally outperformed SVM across most datasets, the 

differences were not statistically significant. The 

comparison between RF and SVM yielded a p-value of 

0.080, while that of SVM and Stacking was p = 0.082, both 

exceeding the typical 0.05 threshold.  

This implies that although trends favored ensemble 

methods, the variation in AUC values may not be strong 

enough to conclusively assert superiority based on the 

available data. These statistical insights reinforce the 

robustness of the proposed ensemble methods, 

particularly in terms of accuracy, while also cautioning 

against over-claims regarding AUC differences without 

stronger statistical backing. 

 

4. DISCUSSION 

The feature selection results demonstrate that the Binary 

Harris Hawks Optimization (BHHO) method not only helps 

in reducing model complexity but also contributes to 
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improving classification accuracy. Compared to prior 

studies using healthcare datasets, the proposed method 

exhibits greater efficiency in identifying relevant features. 

This directly supports the enhancement of predictive 

performance. These findings align well with the research 

objectives, demonstrating how selected features 

influence classification outcomes. Furthermore, the 

consistency of these results with existing literature 

underlines the robustness of the BHHO method.  

Table 9. Comparison of performance outcomes from 
previous studies 

Dataset Model AUC Accuracy 

Healthcare 
[14] 

Adasyn + 
HHO 

0.992 0.990 

12 Nasa 
MDP 

Datasets 
(Our) 

Z-
transformation 

+ Robust 
Scaler + 
Adasyn + 

HHO 

0.998 1.000 

As shown in Table 9, our method shows higher AUC and 

accuracy than the referenced healthcare dataset. While 

the healthcare dataset using ADASYN and HHO reached 

an AUC of 0.992 and accuracy of 0.990, our approach 

achieved 0.998 and accuracy of 1.000 on the NASA MDP 

datasets. Although this suggests a potential performance 

improvement, caution should be exercised in generalizing 

the results due to differences in datasets and 

experimental conditions. Among the classifiers, Random 

Forest (RF) consistently achieved high accuracy and F1 

scores, reaching a maximum F1 of 0.996 on the MC1 

dataset. Stacking also maintained competitive 

performance, while Support Vector Machine (SVM) 

showed high variability, particularly on JM1 and KC1 

where its F1-score fell below 0.600. This variability 

suggests that SVM may require more careful tuning and 

may not generalize as effectively as ensemble methods in 

certain contexts. 

The use of t-tests further supports the interpretation of 

these results. The test confirms statistically significant 

differences in accuracy between SVM and ensemble 

methods such as RF and Stacking, while differences in 

AUC were not statistically significant. These findings 

validate the reliability of our results in terms of accuracy 

but also emphasize the need for cautious interpretation 

when comparing AUC values. 

SVM’s weaker performance on datasets like JM1 and 

KC1 may be attributed to several factors: sensitivity to 

undetected outliers despite preprocessing, limitations in 

selected features, suboptimal kernel or parameter 

choices, and vulnerability to overfitting or underfitting 

depending on dataset size and complexity. This reinforces 

the need for careful parameter tuning and appropriate 

kernel selection when using SVM in defect prediction. 

The proposed methodology contributes to advancing 

software defect prediction by integrating HHO-based 

feature selection and ensemble classifiers. Statistically 

significant improvements in accuracy, and consistent 

performance across multiple datasets, support the 

hypothesis that this combination enhances defect 

prediction. These results validate the framework’s 

potential for handling high-dimensional datasets and 

improving classifier generalization, within the tested 

conditions. 

A comparison with recent studies further validates the 

effectiveness of the proposed method. Ali et al. [47] 

introduced a five-stage framework integrating genetic 

algorithm-based feature selection with an ensemble of 

Random Forest, SVM, and Naïve Bayes, followed by 

majority voting. Their method achieved a maximum 

accuracy of 95.1% and reduced training and testing time 

by 51.52% and 52.31%, respectively, on NASA datasets 

such as CM1, JM1, and PC3. Similarly, Balogun et al. [48] 

proposed an Enhanced Wrapper-based Feature 

Selection (EWFS) method and evaluated it using Naïve 

Bayes and Decision Tree classifiers. Their experiments, 

conducted over 25 datasets with 10-fold cross-validation 

repeated 10 times, reported average accuracies of 

82.57% (NB) and 83.07% (DT), with corresponding AUC 

scores of 0.783 and 0.723, and F-measure values of 

0.807 and 0.820. Although our method demonstrates 

strong performance in this context, further studies are 

needed to validate its generalizability across different 

datasets and domains. 

However, certain limitations must be acknowledged. 

The preprocessing pipeline including z-score 

normalization, robust scaling, and ADASYN may not 

generalize across all datasets. The HHO algorithm, while 

effective, can be sensitive to parameter settings, and its 

iterative nature increases computational cost. 

Additionally, ensemble classifiers, despite their strong 

performance, require more computational resources. All 

experiments rely on NASA MDP datasets, which may not 

fully reflect the diversity of modern software projects. 

Broader evaluation on real-world industrial datasets is 

recommended. 

From a trade-off perspective, while Stacking offers 

excellent accuracy and stability, it also introduces greater 

training complexity compared to simpler models. 

Likewise, feature selection via HHO enhances prediction 

but demands more computation. In practical 

environments, these trade-offs must be considered based 

on context and available resources. The practical 

implications are clear: the proposed framework assists in 

identifying defect-prone modules early in development, 

improving testing efficiency and software quality. Its 

adaptability across datasets supports deployment in real-

world CI/CD environments, particularly for organizations 

maintaining historical defect data. 
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5. CONCLUSION 

The primary objective of this research was to develop a 
reliable classification model using the NASA MDP dataset 
by applying a combination of preprocessing techniques, 
feature selection via Binary Harris Hawks Optimization 
(BHHO), and classification algorithms such as Random 
Forest (RF), Support Vector Machine (SVM), and 
Stacking. The study addressed key challenges in 
software defect prediction, including class imbalance and 
high-dimensional feature spaces, and evaluated model 
performance using accuracy, AUC, precision, recall, and 
F1-measure. 

The findings indicate that the Stacking model achieved 
competitive performance across many datasets. For 
example, in the MC1 dataset, Stacking achieved an 
accuracy of 0.998 and an AUC of 1.000. It also showed 
high precision (0.996), recall (1.000), and F1-measure 
(0.998), reflecting strong performance in balancing 
sensitivity and specificity. However, it is important to 
interpret these results within the context of the tested 
datasets and experimental setup. In contrast, the SVM 
model showed lower performance on several datasets, 
particularly on JM1, where its F1-measure dropped to 
0.597, suggesting potential limitations in handling class 
imbalance and complex data distributions without optimal 
parameter tuning. 

The Random Forest classifier also demonstrated strong 
performance, particularly on datasets such as CM1 and 
MC1, with precision values of 0.952 and 1.000, 
respectively. However, in datasets like JM1 and KC1, 
RF's F1-measure was slightly lower than that of Stacking, 
highlighting the importance of selecting classification 
models based on the characteristics of individual 
datasets. 

Based on these findings, future research may explore 
alternative or hybrid metaheuristic algorithms beyond 
BHHO such as Whale Optimization Algorithm or Firefly 
Algorithm—to potentially improve convergence and 
feature selection quality. Expanding evaluations to 
include larger and more diverse datasets, including 
industrial systems or open-source repositories (e.g., 
GitHub, GitLab), would also support broader 
generalization. Additionally, integrating deep learning 
approaches like graph neural networks or transformer-
based models, and combining static code metrics with 
process or textual features, may offer richer 
representations. Finally, incorporating explainable AI 
(XAI) techniques could enhance transparency and trust in 
defect prediction models, supporting more informed 
decision-making in software engineering practice.  
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