Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics  e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

RESEARCH PAPER

Enhancing Software Defect Prediction: HHO-

Based Wrapper Feature Selection With Ensemble
Methods

Achmad Fauzan Luthfi'®, Rudy Herteno', Friska Abadi'>, Radityo Adi Nugroho'?>, Muhammad
Itgan Mazdadi', and Vijay Anant Athavale?

' Department of Computer Science, Lambung Mangkurat University, Kalimantan Selatan, Indonesia
2 Department of Computer Science and Engineering, Walchand Institute of Technology, Solapur, Maharashtra, India

ABSTRACT

The growing complexity of data across domains highlights the need for
effective classification models capable of addressing issues such as class
imbalance and feature redundancy. The NASA MDP dataset poses such
challenges due to its diverse characteristics and highly imbalanced classes,
which can significantly affect model accuracy. This study proposes a robust
classification framework integrating advanced preprocessing, optimization-
based feature selection, and ensemble learning techniques to enhance
predictive performance. The preprocessing phase involved z-score
standardization and robust scaling to normalize data while reducing the impact
of outliers. To address class imbalance, the ADASYN technique was employed.
Feature selection was performed using Binary Harris Hawk Optimization

PAPER HISTORY

Received Feb. 10, 2025
Accepted April 11, 2025

Published April 23, 2025

KEYWORDS

Harris Hawk Optimization;
Feature Selection;
Ensemble Methods;
Preprocessing;

(BHHO), with K-Nearest Neighbor (KNN) used as an evaluator to determine the Stacking
most relevant features. Classification models including Random Forest (RF),
Support Vector Machine (SVM), and Stacking were evaluated using CONTACT:

performance metrics such as accuracy, AUC, precision, recall, and F1-measure.
Experimental results indicated that the Stacking model achieved superior
performance in several datasets, with the MC1 dataset yielding an accuracy of
0.998 and an AUC of 1.000. However, statistical significance testing revealed
that not all observed improvements were meaningful; for example, Stacking
significantly outperformed SVM but did not show a significant difference when
compared to RF in terms of AUC. This underlines the importance of aligning
model choice with dataset characteristics. In conclusion, the integration of
advanced preprocessing and metaheuristic optimization contributes positively
to software defect prediction. Future research should consider more diverse
datasets, alternative optimization techniques, and explainable Al to further
enhance model reliability and interpretability.

2111016210004@mhs.ulm.ac.id
rudy.herteno@ulm.ac.id
friska.abadi@ulm.ac.id
radityo.adi@ulm.ac.id
mazdadi@ulm.ac.id

1. INTRODUCTION

The quality of software is the most critical aspect of
software development. It refers to how well a software

defect prediction, researchers have employed statistical
analysis, machine learning techniques, and, more
recently, deep learning approaches [4]. Identifying

program meets the needs or expectations of users,
whether explicitly stated or implied. This has a significant
impact on businesses, as it can either strengthen or harm
a company’s brand image [1]. The distribution of defects
across software modules can vary significantly.
Consequently, applying the same testing effort to all
modules within a software project may result in excessive
costs and suboptimal outcomes [2]. Software fault
prediction represents a systematic methodology that
incorporates a range of framework, techniques, and
assessment criteria [3]. To address the task of software

defective modules is a critical step in test planning. This
necessity has driven the development of automated
software defect prediction (SDP) processes that leverage
metrics derived from historical data. As a result, defect
prediction using machine learning techniques has
become a prominent research focus, aiming to reduce
manual effort in identifying various types of defects in
software applications [5]. Early defect prediction enables
timely rectification, contributing to the delivery of
maintainable software. It allows managers to allocate
testing resources effectively, developers to focus on

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

188


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

auditing defect-prone code, and testers to prioritize their
efforts and resources based on defect-proneness data [6].

The performance of predicting software issues is
influenced through how defective data features are
represented [7]. Consequently, it is crucial to eliminate
non-essential features during the development of the
software framework, as these features can introduce
noise, increase computational complexity, and reduce the
overall accuracy of the model [8]. Feature selection aims
to improve the accuracy of Software Defect Prediction
(SDP) models by eliminating irrelevant features, thereby
reducing the computational complexity and execution
time of these algorithms. The three primary approaches
to feature selection are the wrapper method, the
embedded method, and the filter method. The filter
technique evaluates and assigns a score to each feature
in the dataset. In contrast, the wrapper technique utilizes
classifiers to assess the outcomes of feature selection [9].
Among the different methodologies, wrapper-based
techniques stand out as the most widely adopted.
Extensive research has revealed that these techniques
can effectively minimize the number of features while
improving diagnostic accuracy. However, they are not
without their difficulties. Typically, these methods utilize
heuristic algorithms for feature selection (FS), which can
lead to increased computational demands. Moreover,
heuristic algorithms often exhibit sensitivity to their
parameter settings, which can cause fluctuations in
performance. To address these issues, a new approach
known as the Binary Harris Hawks Optimization (BHHO)
algorithm has been developed. [10].

Harris Hawks Optimization (HHO) is a recently
developed swarm-based algorithm and has gained
significant popularity in recent years. It simulates the
cooperative hunting behavior of Harris hawks to solve
optimization problems effectively [11]. Among the
mentioned algorithms, the HHO algorithm is a novel
metaheuristic approach developed by Heidari et al. [12] in
2019, inspired by the cooperative hunting behavior of sky
predators. Due to its effective simulation of the hawks'
chasing strategies, this method demonstrates highly
competitive performance on certain optimization
problems.

Each time a new subset of features is selected, it is
used to train the model. The trained model is then tested
on a separate test set to directly identify the optimal
feature subset from all available features in the dataset
[13]. A Software Defect Prediction (SDP) model generally
consists of three main components: machine learning
algorithms to process and analyze data, soft computing
techniques to address uncertainty and complex
relationships, and software metrics that represent
measurable attributes of the code. These metrics are
used to train the machine learning algorithms, enabling
them to detect patterns and predict potential defect-prone

areas in the code [14]. The process of building a metrics
model for software involves collecting metric features to
predict defects. However, this approach is often
ineffective for projects or versions that vary significantly.
To address this limitation, researchers have introduced
change metrics to improve the accuracy of defect
prediction. Despite its advantages, this technique is less
suitable for complex systems in large-scale industries, as
it tends to be time-consuming and inefficient. Predicting
defects early in the software implementation process
helps reduce both implementation and computation costs
[7-10].

Forecasting software defects is crucial in the process
of Software Development by identifying modules that
need thorough testing. Machine learning (ML) techniques,
particularly supervised and unsupervised learning, are
widely applied for prediction, along with other approaches
like semi-supervised and reinforcement learning [15].
Among these, classification methods are the most
commonly used for software defect prediction [16]. To
improve accuracy, these methods are often integrated
with feature selection processes, which focus on
identifying the most relevant features while removing
those that negatively impact performance.

Researchers have highlighted the issue of class
imbalance adversely impacts the forecasting accuracy of
software fault prediction models. This situation arises
when there is an imbalance in the dataset, characterized
by a notable difference in the quantity of data between the
majority and minority classes [17]. In many cases, class
imbalance leads to overfitting, rendering these models
unreliable. To mitigate this issue, researchers have
proposed primary solutions such as data selection,
combined techniques, and expense-sensitive
assessment [18]. Researchers have explored various
approaches to solve the class disparity issue. Singh,
Misra, and Sharma [19] carried out research on
automating bug severity prediction through summaries
derived from bug metrics. To handle the inherent class
imbalance in the generated bug dataset, they employed
ensemble methods, specifically Voting and Bagging. Their
findings demonstrated that ensemble methods
outperformed single classifiers, indicating that ensemble
approaches are effective in dealing with class imbalance
issues. The ensemble learning model is constructed by
combining several machine learning classifiers to
enhance predictive performance [20]. A substantial body
of empirical research conducted over the past decade
indicates that ensemble methods consistently achieve
higher classification accuracy than their individual
classifier counterparts [21].

The previous study by Mohammad et al. [14], the
authors developed a multi-objective hybrid approach that
integrates Hawk Optimization with adaptive synthetic
sampling techniques. This model was assessed using

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

189


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

various performance metrics, including Area Under the
Curve (AUC), precision, recall, and F-measure. Notably,
when applied to a healthcare dataset, the model achieved
an impressive AUC score of 0.992 and a classification
accuracy of 0.99, demonstrating its effectiveness in
addressing the challenges of defect prediction in
healthcare systems. The primary objective of this
research is to identify pertinent features that can
effectively predict software defects within healthcare
systems, alongside exploring machine learning
algorithms that enhance the accuracy of software defect
prediction (SDP). The main contributions of this study are
outlined as follows:

1. The proposed methodology demonstrates
competitive accuracy in Software Defect
Prediction by combining advanced preprocessing,
metaheuristic-based feature selection using
Binary Harris Hawk Optimization (BHHO), and
ensemble learning techniques.

2. The application of BHHO for feature selection
enables the identification of relevant features while
reducing redundancy, which contributes to
improving the model's ability to generalize and
reducing overfitting risks across diverse datasets.

3. The framework’s effectiveness across multiple
NASA MDP datasets shows its potential for
enhancing defect prediction tasks. However,
findings also emphasize that model selection and
performance vary with dataset characteristics, and
should be validated with statistical significance
testing.

This study is organized as follows: Section Il provides
an overview of the dataset utilized and the proposed
methodologies. Section Ill presents the results of the
proposed methods, focusing on accuracy and AUC, along
with optimization parameters such as precision, recall,
and F1-measure. Section IV offers an interpretation of the
results, comparing them with findings from other studies
while also addressing any limitations encountered. Finally,
Section V concludes the study by summarizing the
objectives, key findings, and suggestions for future
research directions.

2. MATERIALS AND METHOD

The proposed method in this research begins with the
utilization of the NASA MDP dataset. Initially,
preprocessing is conducted, which includes data
transformation through z-score standardization, ensuring
that all values have a mean of 0 and a standard deviation
of 1. This step reduces the influence of dimensionality and
plays a crucial role in outlier detection, as Z-scores
significantly distant from 0 may indicate the presence of
outliers. Following this, scaling techniques such as robust
scaling are applied to center the data around zero and
adjust it to a more consistent scale, thereby minimizing

the impact of extreme values on the results.
Subsequently, sampling techniques like ADASYN are
employed to address class imbalance, enhancing the
classifier's performance. Then, Feature selection
performed using a wrapper method, specifically
employing binary Harris Hawk Optimization (BHHO) with
KNN as the evaluator for feature selection. The log loss
function is utilized as the objective function in the binary
HHO process. The model is subsequently tested using
various classification and ensemble algorithms, including
Random Forest (RF), Support Vector Machine (SVM),
and Stacking. Finally, the model's performance is
evaluated using metrics such as Area Under the Curve
(AUC) and accuracy. Fig. 1 illustrates the research flow
adopted in this study.

NASA MDP

Data distribution
(training & testing)

— ]

' Resample class Feature
i | imbalance (ADASYMN) Selection

Data preprocessing

‘Wrapper
! selection:

Z-Score : ! HHO

Standardization

Robust Scaling

Best feature selected

Random Forest

Stacking

Suppart Vector Machinz

Fig. 1. Flowchart illustrating the research
methodology based on the proposed approach.

A. Dataset

The prediction of software defects is conducted by
leveraging datasets from previous software projects [22].
One of the most frequently utilized datasets is the National
Aeronautics and Space Administration (NASA) dataset,
which is well-known and widely used in the development
of defect prediction models due to its public accessibility.
In total, dataset used for NASA benchmarks comprises 13
distinct software projects, each representing a specific
software system or subsystem developed by NASA. This
dataset includes a wide range of instances, from 127 to
9,277, and features 20 to 40 metrics that focus on
identifying defects and analyzing static code.
Furthermore, a bug tracking system is utilized to keep

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

190


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

track of the number of errors for each instance. The
quality of the software is closely tied to key static code
metrics, which encompass aspects such as size,
readability, and complexity. However, this dataset
presents challenges related to data imbalance, where the
quantity of non-defective instances greatly exceeds that
of the faulty ones, along with those presence of noise
disturbances. This imbalance poses a common
challenge, as prediction outcomes tend to be biased
towards the non-defective class. To address this issue, it
is essential to adjust prediction techniques by integrating
or combining other algorithms [23].

Two class labels from NASA MDP dataset comprises:
“Y” (representing defective) and “N” (representing non-
defective). In the preprocessing phase, these categorical
labels were transformed into numeric values, where Y is
encoded as 1 and N is encoded as 0 [24]. This conversion
facilitates the application of various machine learning
algorithms that require numerical input for effective
processing and analysis. The version of the NASA MDP
dataset utilized in this research is D", sourced from
(https://github.com/klainfo/NASADefectDataset). The
data volume for each dataset is presented in Table 1.

Table 1. Detailed information regarding the NASA

MDP Dataset, including its characteristics and
relevant metrics.
Number Sample Number Defects
Dataset of sizes of (%)
features Defects
CM1 38 327 42 12.8
JM1 22 7720 1612 20.8
KC1 22 1162 294 25.3
KC3 40 194 36 18.5
MCA1 38 1988 46 2.3
MC2 40 124 44 354
MWA1 38 253 27 10.7
PC1 38 705 61 9.7
PC2 37 722 16 2.2
PC3 38 1077 134 12.4
PC4 38 1270 176 13.8
PC5 39 1694 458 27.0

In this study, the labels in the MC1 dataset were
transformed, with the designation "Y" converted to "1" and
"N" converted to "0." This modification is illustrated in
Table 2 and Table 3.

B. Data Transformation

This process is crucial to ensure that the data used in the
model is high quality, thereby enabling accurate results.
By applying appropriate transformations, the impact of
outliers can be minimized, distributions can be
normalized, and the model's performance in predicting
defects can be effectively enhanced [25]. Before
preprocessing, the data was split in a 70:30 ratio, with
70% allocated for training and 30% for testing, using
random_state=42 to ensure reproducibility. Then the
technique standardizes feature values to have a mean of
0 and a standard deviation of 1 using the formula as
shown in Eq. (1).

Xnew =X —X (1)

o

Xnew represents the standardized value indicating how far
the original value X is from the mean X in terms of
standard deviation 0. This is achieved by subtracting the
mean from the original value and dividing by the standard
deviation, resulting in a value that reflects the relative
deviation from the mean. This transformation is crucial for
standardizing data, ensuring a mean of 0 and a standard
deviation of 1, and is effective for detecting outliers, as Z
values far from 0 may indicate their presence. In the
implementation, Z-scores were calculated using the
stats.zscore function from the SciPy library. To identify
and handle outliers, a threshold of 2 was set, meaning any
data point with a Z-score greater than this threshold is
considered an outlier. Consequently, an outlier mask was
created to filter out these points, ensuring that only data
within the threshold is retained for training. This approach
is used due to its effectiveness in standardizing the
dataset, minimizing the impact of outliers, and ensuring
that the features are on a comparable scale, which
ultimately enhances the model's predictive performance.

C. Scalling Techniques

The performance of machine learning models is
influenced by various factors, including the scale of
features in the dataset. Feature scale differences can
cause inaccuracies by favoring larger values.

Table 2. Overview of the CM1 Dataset Labels Before Preprocessing: Original Categorical Labels and Their

Corresponding Numeric Transformations

id LOC_BLANK BRANCH_COUNT NUM_UNIQUE_OPERATORS LOC_TOTAL label

0 3 1 5 17 N

1 3 3 14 14 N

2 1 5 9 13 N
7718 9 35 38 60 N
7719 3 15 17 30 N

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

191


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/klainfo/NASADefectDataset

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

Table 3. Overview of the CM1 Dataset Labels After Preprocessing: Numeric Representations of Categorical

Labels Following Transformation

id LOC_BLANK BRANCH_COUNT NUM_UNIQUE_OPERATORS LOC_TOTAL Ilabel
0 3 1 5 17 0
1 3 3 14 14 0
2 1 5 9 13 0
7718 9 35 38 60 0
7719 3 15 17 30 0
To address this, scaling techniques are employed to  class or under-sampling the majority class, either

ensure all features have a uniform range of values [26].
The Robust Scaler minimize the impact of outliers by
centering data around the median (the second quartile,
Q2(x)) and scaling based on the interquartile range. The
interquartile range is the difference between the first
quartile Q1(x) and the third quartile Q3(x), shown in the
Eqg. (2).

/ x; — Q2(x)

X e ey @

This method standardizes x'; by subtracting the median
Q2(x) from the original value xi and dividing by the
interquartile range. This centers the data around the
median and adjusts the scale to be more consistent,
reducing the influence of extreme values. ppp In the
implementation, the RobustScaler from the Scikit-learn
library was initialized with the following parameters:
with_centering set to True to center the data around the
median, with_scaling set to True to scale the data to the
interquartile range, and the quantile_range set to the
default of (25.0, 75.0) to calculate the IQR. The copy
parameter was set to True, ensuring that a copy of the
data is created during scaling, while unit_variance was set
to False, meaning the data would not be scaled to achieve
a variance of 1 for normally distributed features. This
approach is used due to its ability to minimize the impact
of outliers by centering the data around the median and
scaling based on the interquartile range, ensuring that the
model remains robust and accurate even in the presence
of extreme values.

D. Sampling Techniques

The performance of classifiers is influenced by various
factors, including the number of samples and the types of
classes analyzed. Data imbalance occurs when the
minority class has significantly fewer instances than the
majority class, leading to challenges for machine learning-
based classifiers and diminishing their overall
effectiveness. Numerous studies have explored this issue
and proposed solutions, with Bowyer identifying two
primary approaches: data-based and algorithm-based
methods [9]. The data-based approach focuses on
balancing class distribution through resampling
techniques, which can involve over-sampling the minority

randomly or systematically. Various methods have been
suggested to address imbalanced data, including
ADASYN, SMOTE, and Random Oversampling [27].
Adaptive Synthetic Sampling (ADASYN) is a method
aimed at addressing dataset imbalance to improve
classifier performance (Algorithm 1). It synthesizes
minority class samples based on their distribution in the
training dataset, focusing more on difficult-to-learn
samples and less on easier ones. The approach
determines a probability distribution to generate additional
minority class samples, resulting in a more balanced
dataset [14]. This mechanism ensures that the distribution
of new samples reflects the existing data patterns,
particularly in the minority class, thereby enhancing class
balance without losing important information. The
parameters used in the ADASYN implementation include
sampling_strategy ='auto’, which automatically targets the
maijority class for resampling, ensuring a balanced class
distribution. Additionally, random_state=42 is set to
control the randomization of the algorithm, allowing for
reproducible results. The n_neighbors parameter is set to
5, indicating that five nearest neighbors will be used to
define the neighborhood of samples for generating
synthetic samples. This configuration is chosen to
enhance the model's ability to learn from the minority
class, thereby improving overall classifier performance
while maintaining the integrity of the data distribution. The
following provides a more detailed explanation of how the
ADASYN technique is implemented in the pseudocode
presented.

E. Feature Selection

In classification, techniques for feature selection are
primarily grouped into three categories: filter methods,
wrapper methods, and embedded methods [28]. Key
differences include whether selection is performed
separately or integrated with the learning algorithm, the
evaluation metrics used, computational complexity, and
the ability to detect redundancy and feature interactions.
Filter methods evaluate features based on their
relationships and are generally faster, while wrapper
methods use learning algorithms for evaluation and tend

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

192


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

to be more accurate [29]. Feature selection (FS)
algorithms are divided into two main categories: exact
algorithms and meta-heuristic search algorithms [9].
Meta-heuristic algorithms typically outperform exact
methods, especially for complex problems. They are
further classified into single-solution algorithms, such as
Tabu Search [30], which emphasize exploitation, and
population-based algorithms, like Harris Hawks
Optimization (HHO) [31], which focus on exploration.

While population-based algorithms explore broader
search areas and yield more accurate results, single-
solution algorithms generally execute faster. Binary
encoding is a simple approach for FS, where 0 indicates
a feature is not selected and 1 indicates it is selected. The
application of feature selection (FS) algorithms will select
m features from the original n features, where m < n.

Algorithm1. Adaptive Synthetic

Input:

o Dataset S1 with n samples vi and labels wi (0 for minority class, 1 for majority class).

Output:
¢ New synthetic data.
Steps:
1. Calculate Class Imbalance:

e Find the ratio of minority to majority samples.

2. Determine Total Samples to Synthesize:

e Calculate S = (n1-n2) * B, where n1 is the number of minority samples, n2 is the number of majority

samples, and (3 is a coefficient.
3. For Each Minority Sample vi:
¢ Identify the K nearest neighbors.

o Calculate the ratio ri = Ai / K, where Ai is the number of observations in the K-nearest neighbors.
¢ Normalize ri to create a probability distribution: ri = ri / Zri.
e Compute si =ri * S, indicating the total synthetic samples needed for each minority sample vi.

4. Generate Synthetic Samples:
e Form=1,2,..,si

e Randomly select a sample vm from the K-nearest neighbors of vi.
e Create a synthetic sample vq using the formula: vq = vi + (vi - vm).

5. End of Algorithm.

The Harris Hawks Optimizer (HHO) was selected over
other metaheuristic algorithms due to its innovative
design that incorporates two distinct exploration phases
and four exploitation phases, enhancing its ability to
navigate complex search spaces effectively. While
numerous well-established algorithms such as the Whale
Optimization Algorithm (WOA) [32], Dragonfly Algorithm
(DA) [33], Grasshopper Optimization Algorithm (GOA)
[34], Grey Wolf Optimizer (GWO) [35], Multi-Verse
Optimizer (MVO) [36], and Moth-Flame Optimizer (MFO)
[37] demonstrate robust search capabilities, HHO's
unique structure allows for a more refined balance
between exploration and exploitation. This capability
enables HHO to achieve superior performance in solving
diverse mathematical and engineering problems, making
it a compelling choice for applications requiring high-
quality solutions within reasonable computational
timeframes.

F. Harris Hawk Optimization

Harris Hawk Optimization (HHO) is a novel optimization
algorithm inspired by the hunting dynamics between
hawks and rabbits. Its mathematical foundation allows it
to effectively tackle various constrained and
unconstrained problems. The algorithm updates search
agents through two exploration phases and four

exploitation phases [38]. Harris Hawk Optimization (HHO)
was initially designed to operate in continuous search
spaces. However, real-world problems like feature
selection require binary search spaces. To address this,
the algorithm has been efficiently reformulated to function
in binary spaces. In several studies, a two-phase
binarization technique has been employed to present a
binary variant of HHO, referred to as Binary Harris Hawk
Optimization (BHHO) [39]. Wrapper-based feature
selection using Binary Harris Hawk Optimization (BHHO)
is combined with the K-Nearest Neighbor (KNN) classifier
as the evaluator with default parameters (n_neighbors=5)
as the evaluator for HHO. KNN is selected for its simplicity
and common use as a non-parametric classification
technique, and it has shown competitive performance in
various studies compared to other feature selection
methods [38]. BHHO is specifically designed to handle
binary problems, making it ideal for scenarios where the
solution requires a binary decision, such as selecting or
rejecting features. When adapting metaheuristic
algorithms for optimization, two key aspects are crucial:
solution representation and the objective function.

Solution Representation: In feature selection (FS), each
feature can be either selected or not, represented as a
binary vector X={x1,x2,...,xN}, total count of features
represent with N.

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

193


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

Target function: Guiding the search process is crucial by
assessing candidate solutions according to their quality.
The main aim of feature selection (FS) is to minimize the
count of chosen features while improving classification
effectiveness. This research, a single-target HHO
algorithm is utilized, with the objective function specified
as Log Loss, as illustrated in Eq. (3).

N
Log Loss = _%Z[Yi log(py) + (1 —y)log(1 - py)] 3)
i=1
N represents the total number of samples, yi is the actual
class label (0 or 1), and pi is the predicted probability of
the class. Log Loss measures the performance of the
model, providing a lower value for better classification
accuracy. Python library for performing feature selection
using a variety of nature inspired wrapper algorithms is
taken from (https://github.com/jaswinder9051998/zoofs).
In this research, the parameters proposed by the HHO
algorithm, specifically a population size of 10 and 30
iterations by previous analyses [14] have indicated that
this combination yields the optimal performance for the
predictive model.

G. Classification

Random Forest (RF) and Support Vector Machine (SVM)
are the two key classifiers employed to differentiate
between software modules with defects and those
without. These methodologies are integral to machine
learning (ML) and demonstrate substantial effectiveness
in classification performance. Their primary goal is to
identify patterns that indicate specific classes, connecting
each data instance to the existing dataset [40].

1. Random Forest

Random Forest (RF) is an ensemble method that consists
of multiple decision trees, combining their predictions to
improve accuracy and robustness [41]. It effectively
handles datasets with many irrelevant attributes by
selecting the most informative ones for classification. RF
constructs decision trees by randomly sampling data
subsets and mapping them to randomly chosen feature
subspaces [42]. Random Forest is represented in Eq. (4).

0T}, L )

In this equation, the k-th decision tree is trained with input
data x and random parameters 8, which include a subset
of data from bagging and a random subset of features at
each node. By building T independent decision trees,
predictions are combined using majority voting for
classification or averaging for regression, improving
model accuracy and reducing the risk of overfitting. In this
Random Forest implementation, the parameters used are
n_estimators=1000 [43], which specifies the number of
trees in the forest to enhance predictive accuracy.
Additionally, max_depth=None allows the trees to grow
until all leaves are pure, ensuring that the model captures
the complexity of the data. The parameter

min_samples_leaf=1 is also set, which specifies the
minimum number of samples required to be at a leaf node.
This configuration is designed to optimize the model's
performance by balancing accuracy and robustness.

2. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine
learning algorithm used for both classification and
regression tasks [44]. SVM creates an optimal hyperplane
to efficiently differentiate data sample into separate
classes by transforming them into an expanded-
dimensional space. This method is especially effective for
two-class classification applications with significant
dimensionality, rendering it useful for applications such as
Software Defect Prediction (SDP). SVM's ability to handle
complex, non-linear data and maximize the margin
between classes enhances its generalization capabilities,
contributing to its widespread use in fields such as image
processing and bioinformatics.  Support  Vector
Classification (SVC) is a classification method that utilizes
the Support Vector Machine (SVM) algorithm to separate
data into classes. It can employ various kernels, including
linear, polynomial, and radial basis function (RBF)
kernels. RBF SVC is particularly effective for non-linearly
separable data, as it measures the distance between data
points and class centers, allowing for complex decision
boundaries. Its strengths include handling intricate
patterns, flexibility in adjusting parameters y and C, and
strong performance in applications such as text, image,
and medical data analysis. The RBF kernel equation is
represented in Eq. (5).

K(x,y) = e Vllx=yl? (5)

y is a parameter that controls the influence of a single
training example. A small value of y results in smoother
decision boundaries, while a larger value leads to sharper
decision boundaries. This parameter plays a crucial role
in determining the model's flexibility and its ability to
generalize from the training data. In the implementation
we used the default parameters used include C=1.0,
which serves as the regularization parameter, controlling
the trade-off between achieving a low training error and a
low testing error. The kernel="rbf' is specified as the kernel
type, which is particularly effective for handling non-linear
relationships in the data. Additionally, random_state=42 is
set to ensure reproducibility of results by controlling the
randomness in the algorithm. The probability=True
parameter is also included, allowing the model to output
probability estimates for the predictions. This
configuration is designed to optimize the model's
performance while providing reliable probability estimates
for classification tasks.

3. Stacking

Stacking is a heterogeneous ensemble model that
combines multiple base classifiers through a meta-
classifier to produce a final prediction model [45]. The
base classifiers use different learning algorithms and are
trained on the entire dataset, while their outputs serve as
the training data for the meta-classifier to build the final
model. In the implementation, the estimators parameter is

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

194


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/jaswinder9051998/zoofs

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

defined as a list of tuples, where each tuple consists of a
string (hame) and an estimator instance. For example, the
base estimators include a RandomForestClassifier with
random_state=42 and an SVC with probability=True and
random_state=42. This combination allows for diverse
learning algorithms to be stacked together. The
final_estimator parameter is set to a classifier that will be
used to combine the outputs of the base estimators,
effectively creating a robust ensemble model. This
configuration enhances the model's predictive
performance by leveraging the strengths of multiple
classifiers.

H. Evaluation Metrics

Assessment metrics such as accuracy, specificity,
sensitivity, precision, and ROC-AUC are integral to
prediction and classification. This study focuses on
analyzing the suggested framework through accuracy and
AUC values, utilizing ROC-AUC, which is frequently
applied in the context of software defect prediction. AUC
useful in class imbalance situations, providing a
comprehensive view of model performance across
thresholds. The calculation of AUC is based on the ratio
of false positive rates to true positive rates. Accuracy
serves as a measurement that effectively differentiates
between defective and non-defective software
components. It is computed as the ratio of true positives
to true negatives across all instances, as illustrated in Eq.
(6).
TP+ TN

A =
Cewray = TP Y TN +FP + FN (6)

TP (True Positive) and TN (True Negative) represent
correct predictions for positive and negative classes,
while FP (False Positive) and FN (False Negative)
indicate incorrect predictions. Accuracy measures the
model's effectiveness in classifying data, ranging from 0
to 1, with 1 indicating perfect predictions. AUC (Area
Under the Curve) assesses the model's capability to
distinguish between true positive rates and false positive
rates across different thresholds. A higher AUC value
indicates better model performance in distinguishing
between classes [35]. The AUC is represented in Eq. (7).
1+ TPR—FPR

2 (7)
True Positive Rate (TPR) measures the proportion of
correct positive predictions, while False Positive Rate
(FPR) indicates incorrect negative predictions. AUC
ranges from 0 to 1, with 1 representing perfect
performance and 0.5 indicating random predictions. Key
optimization parameters include precision, recall, and F1-
measure. The F1 Score is selected as an evaluation
metric because it effectively balances precision and recall,
making it suitable for imbalanced datasets. Precision
measures the accuracy of positive predictions, while
recall indicates the model's ability to identify all relevant
positive instances. Unlike accuracy, the F1 Score

AUC =

accounts for both false positives and false negatives,
providing a clearer picture of model performance [46].
Furthermore, in the calculations for AUC and F1-score,
precision reflects how accurately positive instances are
identified among all predicted positives, highlighting the
relevance of using the F1 Score in contexts with uneven
class distributions.

3. RESULTS

This section presents the results of the proposed
framework in a clear and organized manner, using tables
and figures to effectively illustrate key findings. The
evaluation was conducted using the NASA MDP datasets
with the proposed framework implemented in Jupyter
Notebook and tested on a machine with a Ryzen 5 4600H
CPU @ 3.00GHz and 16 GB DDR4 RAM. Performance
was measured using accuracy, precision, recall, F1-
score, and AUC metrics.

To statistically validate the observed differences in
model performance, this study employs independent
samples t-tests. The primary purpose of the t-test is to
determine whether the differences in performance
metrics—particularly accuracy and AUC—between
classifiers are statistically significant or could have
occurred by chance. This allows for a more rigorous and
objective evaluation of model effectiveness beyond
simple numerical comparisons. By applying this test, the
study avoids overclaiming performance advantages and
strengthens the reliability of its conclusions.

A. Selected Features Using BHHO

Table 4 displays the number of features selected by the
Binary Harris Hawk Optimization (BHHO) from each
dataset. These selected features are considered most
relevant to defect prediction.

Table 4. Displays the features that have been selected
for analysis, highlighting their significance and
relevance to the study.

Dataset Features Feature Selection BHHO
CM1 38 26
JM1 22 10
KCA1 22 14
KC3 40 26
MCA1 38 26
MC2 40 22
MWA1 38 21
PC1 38 21
PC2 37 22
PC3 38 25
PC4 38 25
PC5 39 30

The features repeatedly selected across datasets include
metrics such as CYCLOMATIC _COMPLEXITY,

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

195


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

HALSTEAD_EFFORT, HALSTEAD ERROR_EST,
LOC_COMMENTS, and LOC _TOTAL. Their frequent

Table 6. The effectiveness and performance of the
optimization parameters were thoroughly evaluated

occurrence indicates their relevance in predicting  and analyzed in this study.
software defects. For instance, the presence of
LOC_COMMENTS suggests the influence of code Data Precision Recall F1-
documentation on software quality. measure
RF 0.952 0.976 0.964
B. Accuracy and AUC Performance CM1 SVM 0.804 1 0.891
; Stacking 0.952 0.976 0.964
Table 5 provides accuracy and AUC values for three RE 0.901 0855 0877
models: Random Forest (RF), Support Vector Machine JM1 SVM 0-639 0.560 0'597
(SVM), and Stacking. These models were applied after , ’ ' '
the BHHO-based feature selection process Stacking 0.900 0.857 0.878
' RF 0.860 0.806 0.832
Table 5. Results of various classification algorithms KC1 SVM 0.634 0.650 0.642
based on the proposed approach are presented, Stacking 0.861 0.812 0.836
showcasing their performance and effectiveness in RF 1 0.810 0.895
the analysis. KC3 SVM 0.905 0.905 0.905
- Stacking 0.95 0.905 0.927
Data RF SVM Stacking RE 1 0993 0996
CM1 Accuracy 0.961 0.868 0.961 MC1 SVM 0.965 1 0.982
AUC 0.982 0.979 0.987 Stacking 0.996 1 0.998
JM1 Accuracy 0.874 0.603 0.875 RF 1 0.909 0.952
AUC 0.942 0.648 0.940 MC2 SVM 0.769 0.909 0.833
KCA Accuracy 0.834 0.629 0.837 Stacking 0.833 0.909 0.870
AUC 0.894 0.675 0.893 RF 0.966 0.966 0.966
KC3 Accuracy 0.902 0.902 0.927 MW1 SVM 0.889 0.828 0.857
AUC 0.974 0.988 0.990 Stacking 0.903 0.966 0.933
MC1 Accuracy 0.966 0.981 0.998 RF 0.974 0.974 0.974
AUC 1.000 0.998 1.000 PC1 SVM 0.893 0.987 0.938
Mcp Accuracy  0.952 0.810 0.857 Stacking  0.949 0.974 0.961
AUC 0.955 0.891 0.945 RF 0.940 0.963 0.952
MW Accuracy 0.966 0.862 0.931 PC2 SVM 0.921 1 0.959
AUC 0.996 0.926 0.987 Stacking 0.953 1 0.976
PC1 Accuracy 0.976 0.940 0.964 RF 0.935 0.962 0.948
AUC 0.994 0.990 0.992 PC3 SVM 0.783 0.971 0.867
pcp Accuracy  0.956 0.962 0.978 Stacking 0.952 0.962 0.957
AUC 0.997 0.991 0.999 RF 0.898 0.936 0.917
pc3 Accuracy  0.952 0.865 0.961 PC4 SVM 0.807 0.979 0.885
AUC 0.994 0.952 0.994 Stacking 0.904 0.936 0.920
pca Accuracy  0.915 0.872 0.918 RF 0.754 0.885 0.814
AUC 0.970 0.935 0.973 PC5 SVM 0.701 0.782 0.739
pcs Accuracy  0.816 0.749 0.810 Stacking  0.749 0.878 0.808
AUC 0.907 0.821 0.902

Stacking and RF consistently achieved the highest
performance. SVM performed notably poorer in datasets
such as JM1, KC1, and PC5, possibly due to suboptimal
parameters or kernel choice. Adjusting model parameters
through grid search or random search may help identify
optimal SVM parameters.

C. Evaluation of Precision, Recall, and F1-Measure

Table 6 presents the precision, recall, and F1-measure of
the three classifiers. These metrics further confirm the
effectiveness of the proposed method with selected
features.

D. Visualization of Results

Fig 2 illustrates the accuracy and AUC across
experiments:

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

196


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

model. To further validate the observed performance
differences, a paired t-test was conducted between
models.

Table 7. Statistical comparison of accuracy between
classification models thoroughly evaluated and
analyzed in this study.

Model . . Significant
Comparison t-Statistic p-Value (p < 0.05)
RF vs SVM 2.231 0.036 Yes
RF vs
Stacking 0.188 0.853 No
SVM vs -2.079 0.049 Yes
Stacking

1.00
0.90
> 0.80
)
o
3
Q
Q
< 0.70
0.60
= =2 Q0O 00O =000 0 0
OS5 XX S=so40o4aaadca
Dataset
® Random Forest = SVM Stacking
(a)
1.00
0.90
0.80
©]
-]
<
0.70
0.60
S>S0000=200 000
OS5 XX >=s4aoad4aaqca
Dataset
®Random Forest =SVM Stacking

Table 8. Statistical comparison of AUC between
classification models thoroughly evaluated and
analyzed in this study.

Model . Significant
Comparison t-Statistic p-Value (: < 0.05)
RF vs SVM 1.834 0.080 No
RF vs 0.017 0.987 No
Stacking
SVM vs -1.820 0.082 No
Stacking

(b)

Fig. 2. Evaluation of Accuracy and AUC outcomes for
each experiment: (a) Accuracy metrics for all
experiments, (b) AUC metrics for all experiments.

E. Statistical Analysis of Model Performance

Table 7 and Table 8 show the accuracy and AUC scores
obtained across experiments for each classification

The test compared the accuracy and AUC values across
the Random Forest (RF), Support Vector Machine (SVM),
and Stacking models over twelve datasets. Results
showed that, in terms of accuracy, the differences
between RF and SVM (p = 0.036) and between SVM and
Stacking (p = 0.049) were statistically significant at the 5%
level. These findings indicate that both RF and Stacking
significantly outperformed SVM. However, no significant
difference was found between RF and Stacking (p =
0.853), suggesting their accuracies were statistically
comparable. Regarding AUC, while RF and Stacking
generally outperformed SVM across most datasets, the
differences were not statistically significant. The
comparison between RF and SVM yielded a p-value of
0.080, while that of SVM and Stacking was p = 0.082, both
exceeding the typical 0.05 threshold.

This implies that although trends favored ensemble
methods, the variation in AUC values may not be strong
enough to conclusively assert superiority based on the
available data. These statistical insights reinforce the
robustness of the proposed ensemble methods,
particularly in terms of accuracy, while also cautioning
against over-claims regarding AUC differences without
stronger statistical backing.

4. DISCUSSION

The feature selection results demonstrate that the Binary
Harris Hawks Optimization (BHHO) method not only helps
in reducing model complexity but also contributes to

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

197


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

improving classification accuracy. Compared to prior
studies using healthcare datasets, the proposed method
exhibits greater efficiency in identifying relevant features.
This directly supports the enhancement of predictive
performance. These findings align well with the research
objectives, demonstrating how selected features
influence classification outcomes. Furthermore, the
consistency of these results with existing literature
underlines the robustness of the BHHO method.

Table 9. Comparison of performance outcomes from
previous studies

Dataset Model AUC Accuracy
Healthcare Adasyn +
[14] HHO 0.992 0.990
Z-
12 Nasa transformation
MDP + Robust
Datasets Scaler + 0.998 1.000
(Our) Adasyn +
HHO

As shown in Table 9, our method shows higher AUC and
accuracy than the referenced healthcare dataset. While
the healthcare dataset using ADASYN and HHO reached
an AUC of 0.992 and accuracy of 0.990, our approach
achieved 0.998 and accuracy of 1.000 on the NASA MDP
datasets. Although this suggests a potential performance
improvement, caution should be exercised in generalizing
the results due to differences in datasets and
experimental conditions. Among the classifiers, Random
Forest (RF) consistently achieved high accuracy and F1
scores, reaching a maximum F1 of 0.996 on the MC1
dataset. Stacking also maintained competitive
performance, while Support Vector Machine (SVM)
showed high variability, particularly on JM1 and KC1
where its F1-score fell below 0.600. This variability
suggests that SVM may require more careful tuning and
may not generalize as effectively as ensemble methods in
certain contexts.

The use of t-tests further supports the interpretation of
these results. The test confirms statistically significant
differences in accuracy between SVM and ensemble
methods such as RF and Stacking, while differences in
AUC were not statistically significant. These findings
validate the reliability of our results in terms of accuracy
but also emphasize the need for cautious interpretation
when comparing AUC values.

SVM'’s weaker performance on datasets like JM1 and
KC1 may be attributed to several factors: sensitivity to
undetected outliers despite preprocessing, limitations in
selected features, suboptimal kernel or parameter
choices, and vulnerability to overfitting or underfitting
depending on dataset size and complexity. This reinforces
the need for careful parameter tuning and appropriate
kernel selection when using SVM in defect prediction.

The proposed methodology contributes to advancing
software defect prediction by integrating HHO-based
feature selection and ensemble classifiers. Statistically
significant improvements in accuracy, and consistent
performance across multiple datasets, support the
hypothesis that this combination enhances defect
prediction. These results validate the framework’s
potential for handling high-dimensional datasets and
improving classifier generalization, within the tested
conditions.

A comparison with recent studies further validates the
effectiveness of the proposed method. Ali et al. [47]
introduced a five-stage framework integrating genetic
algorithm-based feature selection with an ensemble of
Random Forest, SVM, and Naive Bayes, followed by
majority voting. Their method achieved a maximum
accuracy of 95.1% and reduced training and testing time
by 51.52% and 52.31%, respectively, on NASA datasets
such as CM1, JM1, and PC3. Similarly, Balogun et al. [48]
proposed an Enhanced Wrapper-based Feature
Selection (EWFS) method and evaluated it using Naive
Bayes and Decision Tree classifiers. Their experiments,
conducted over 25 datasets with 10-fold cross-validation
repeated 10 times, reported average accuracies of
82.57% (NB) and 83.07% (DT), with corresponding AUC
scores of 0.783 and 0.723, and F-measure values of
0.807 and 0.820. Although our method demonstrates
strong performance in this context, further studies are
needed to validate its generalizability across different
datasets and domains.

However, certain limitations must be acknowledged.
The  preprocessing pipeline including  z-score
normalization, robust scaling, and ADASYN may not
generalize across all datasets. The HHO algorithm, while
effective, can be sensitive to parameter settings, and its
iterative  nature increases computational cost.
Additionally, ensemble classifiers, despite their strong
performance, require more computational resources. All
experiments rely on NASA MDP datasets, which may not
fully reflect the diversity of modern software projects.
Broader evaluation on real-world industrial datasets is
recommended.

From a trade-off perspective, while Stacking offers
excellent accuracy and stability, it also introduces greater
training complexity compared to simpler models.
Likewise, feature selection via HHO enhances prediction
but demands more computation. In practical
environments, these trade-offs must be considered based
on context and available resources. The practical
implications are clear: the proposed framework assists in
identifying defect-prone modules early in development,
improving testing efficiency and software quality. Its
adaptability across datasets supports deployment in real-
world CI/CD environments, particularly for organizations
maintaining historical defect data.

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

198


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

5. CONCLUSION

The primary objective of this research was to develop a
reliable classification model using the NASA MDP dataset
by applying a combination of preprocessing techniques,
feature selection via Binary Harris Hawks Optimization
(BHHO), and classification algorithms such as Random
Forest (RF), Support Vector Machine (SVM), and
Stacking. The study addressed key challenges in
software defect prediction, including class imbalance and
high-dimensional feature spaces, and evaluated model
performance using accuracy, AUC, precision, recall, and
F1-measure.

The findings indicate that the Stacking model achieved
competitive performance across many datasets. For
example, in the MC1 dataset, Stacking achieved an
accuracy of 0.998 and an AUC of 1.000. It also showed
high precision (0.996), recall (1.000), and F1-measure
(0.998), reflecting strong performance in balancing
sensitivity and specificity. However, it is important to
interpret these results within the context of the tested
datasets and experimental setup. In contrast, the SVM
model showed lower performance on several datasets,
particularly on JM1, where its F1-measure dropped to
0.597, suggesting potential limitations in handling class
imbalance and complex data distributions without optimal
parameter tuning.

The Random Forest classifier also demonstrated strong
performance, particularly on datasets such as CM1 and
MC1, with precision values of 0.952 and 1.000,
respectively. However, in datasets like JM1 and KC1,
RF's F1-measure was slightly lower than that of Stacking,
highlighting the importance of selecting classification
models based on the characteristics of individual
datasets.

Based on these findings, future research may explore
alternative or hybrid metaheuristic algorithms beyond
BHHO such as Whale Optimization Algorithm or Firefly
Algorithm—to potentially improve convergence and
feature selection quality. Expanding evaluations to
include larger and more diverse datasets, including
industrial systems or open-source repositories (e.g.,
GitHub, GitLab), would also support broader
generalization. Additionally, integrating deep learning
approaches like graph neural networks or transformer-
based models, and combining static code metrics with
process or textual features, may offer richer
representations. Finally, incorporating explainable Al
(XAl) techniques could enhance transparency and trust in
defect prediction models, supporting more informed
decision-making in software engineering practice.

REFERENCES

[1] J. Kethireddy, E. Aravind, and M. Vijayakamal,
“Software Defects Prediction using Machine
Learning Algorithms,” Nov. 2023.

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

(10]

(1]

[12]

M. Canaparo, E. Ronchieri, and G. Bertaccini,
“Software defect prediction: A study on software
metrics using statistical and machine learning
methods,” Nov. 2022, p. 20. doi:
10.22323/1.415.0020.

M. B. R. Pandit and N. Varma, “A Deep Introduction
to Al Based Software Defect Prediction (SDP) and
its Current Challenges,” in TENCON 2019 - 2019
IEEE Region 10 Conference (TENCON), 2019, pp.
284-290. doi: 10.1109/TENCON.2019.8929661.

S. Omri and C. Sinz, “Deep Learning for Software
Defect Prediction: A Survey,” in Proceedings of the
IEEE/ACM 42nd International Conference on
Software Engineering Workshops, in ICSEW’20.
New York, NY, USA: Association for Computing
Machinery, 2020, pp. 209-214. doi:
10.1145/3387940.3391463.

S. Haldar and L. Capretz, “Interpretable Software
Defect Prediction from Project Effort and Static
Code Metrics,” Computers, vol. 13, p. 52, Nov. 2024,
doi: 10.3390/computers13020052.

R. Malhotra and K. Khan, “A Study on Software
Defect Prediction using Feature Extraction
Techniques,” in 2020 8th International Conference
on  Reliability, Infocom  Technologies and
Optimization (Trends and Future Directions)
(ICRITO), 2020, pp- 1139-1144. doi:
10.1109/ICRITO48877.2020.9197999.

H. Turabieh, M. Mafarja, and X. Li, “Iterated feature
selection algorithms with layered recurrent neural
network for software fault prediction,” Expert Syst
Appl, vol. 122, pp. 2742, 2019, doi:
https://doi.org/10.1016/j.eswa.2018.12.033.

P. Kumar, G. Gupta, and R. Tripathi, “Toward Design
of an Intelligent Cyber Attack Detection System
using Hybrid Feature Reduced Approach for loT
Networks,” Arab J Sci Eng, vol. 46, Nov. 2021, doi:
10.1007/s13369-020-05181-3.

I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher,
“Enhanced Binary Moth Flame Optimization as a
Feature Selection Algorithm to Predict Software
Fault Prediction,” IEEE Access, vol. 8, pp. 8041—
8055, 2020, doi: 10.1109/ACCESS.2020.2964321.

M. Dong, Y. Wang, Y. Todo, and Y. Hua, “A Novel
Feature Selection Strategy Based on the Harris
Hawks Optimization Algorithm for the Diagnosis of
Cervical Cancer,” Electronics (Basel), vol. 13, no.
13, 2024, doi: 10.3390/electronics13132554.

S. Song et al., “Dimension decided Harris hawks
optimization with Gaussian mutation: Balance
analysis and diversity patterns,” Know/ Based Syst,
vol. 215, p. 106425, 2021, doi:
https://doi.org/10.1016/j.knosys.2020.106425.

A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M.
Mafarja, and H. Chen, “Harris hawks optimization:

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

199


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Algorithm and applications,” Future Generation
Computer Systems, vol. 97, pp. 849-872, 2019, doi:
https://doi.org/10.1016/j.future.2019.02.028.

L. Peng, Z.-N. Cai, A. A. Heidari, L. Zhang, and H.
Chen, “Hierarchical Harris hawks optimizer for
feature selection (Journal of Advanced Research,
Impact factor 12.822),” J Adv Res, Nov. 2023, doi:
10.1016/j.jare.2023.01.014.

U. G. Mohammad, S. Imtiaz, M. Shakya, A.
Almadhor, and F. Anwar, “An Optimized Feature
Selection Method Using Ensemble Classifiers in
Software Defect Prediction for Healthcare
Systems,” Wirel Commun Mob Comput, vol. 2022,
no. 1, p. 1028175, 2022, doi:
https://doi.org/10.1155/2022/1028175.

W. Long et al., “Unified Spatial-Temporal Neighbor
Attention Network for Dynamic Traffic Prediction,”
IEEE Trans Veh Technol, vol. 72, no. 2, pp. 1515—
1529, 2023, doi: 10.1109/TVT.2022.3209242.

Ma. J. Heméandez-Molinos, A. J. Sanchez-Garcia,
and R. E. Barrientos-Martinez, “Classification
Algorithms for Software Defect Prediction: A
Systematic Literature Review,” in 2021 9th
International Conference in Software Engineering
Research and Innovation (CONISOFT), 2021, pp.
189-196. doi:
10.1109/CONISOFT52520.2021.00034.

R. Aflaha, R. Herteno, M. R. Faisal, F. Abadi, and S.
Saputro, “Effect of SMOTE Variants on Software
Defect Prediction Classification Based on Boosting
Algorithm,” Jurnal limiah Teknik Elektro Komputer
dan Informatika, vol. 10, pp. 201-216, Mar. 2024,
doi: 10.26555/jiteki.v10i2.28521.

A. Balogun et al.,, “SMOTE-Based Homogeneous
Ensemble Methods for Software Defect Prediction,”
2020, pp. 615-631. doi: 10.1007/978-3-030-58817-
5_45.

V. B. Singh, S. Misra, and M. Sharma, “Bug Severity
Assessment in Cross Project Context and
Identifying Training Candidates,” Journal of
Information & Knowledge Management, vol. 16, no.
01, p. 1750005, 2017, doi:
10.1142/S0219649217500058.

A. N. Rao Moparthi and B. Dr. N. Geethanjali,
“Design and implementation of hybrid phase based
ensemble technique for defect discovery using
SDLC software metrics,” in 2016 2nd International
Conference on Advances in Electrical, Electronics,
Information, Communication and Bio-Informatics
(AEEICB), 2016, pp. 268-274. doi:
10.1109/AEEICB.2016.7538287.

F. Matloob et al., “Software Defect Prediction Using
Ensemble Learning: A Systematic Literature
Review,” |IEEE Access, vol. 9, pp. 98754-98771,
2021, doi: 10.1109/ACCESS.2021.3095559.

[22]

(23]

(24]

(2]

(26]

(27]

(28]

(29]

(30]

[31]

N. Grattan, D. Alencar da Costa, and N. Stanger,
“The need for more informative defect prediction: A
systematic literature review,” Inf Softw Technol, vol.
171, p. 107456, 2024, doi:
https://doi.org/10.1016/j.infsof.2024.107456.

A. Hardoni, “Integrasi SMOTE pada Naive Bayes
dan Logistic Regression Berbasis Particle Swarm
Optimization untuk Prediksi Cacat Perangkat
Lunak,” Jurnal Sistem dan Teknologi Informasi
(Justin), vol. 9, p. 144, Feb. 2021, doi:
10.26418/justin.v9i2.43173.

K. Suryadi, R. Herteno, S. W. Saputro, M. R. Faisal,
and R. Nugroho, “Comparative Study of Various
Hyperparameter Tuning on Random Forest
Classification With SMOTE and Feature Selection
Using Genetic Algorithm in Software Defect
Prediction,” Journal of Electronics Electromedical
Engineering and Medical Informatics, vol. 6, pp.
137-147, Mar. 2024, doi:
10.35882/jeeemi.v6i2.375.

Y. Zhao, Z. Huang, L. Gong, Y. Zhu, Q. Yu, and Y.
Gao, “Evaluating the Impact of Data Transformation
Techniques on the Performance and Interpretability
of Software Defect Prediction Models,” IET
Software, vol. 2023, no. 1, p. 6293074, 2023, doi:
https://doi.org/10.1049/2023/6293074.

L. B. V de Amorim, G. D. C. Cavalcanti, and R. M.
O. Cruz, “The choice of scaling technique matters
for classification performance,” Appl Soft Comput,
vol. 133, p. 109924, 2023, doi:
https://doi.org/10.1016/j.as0c.2022.109924.

S. Susan and A. Kumar, “The balancing trick:
Optimized sampling of imbalanced datasets—A
brief survey of the recent State of the Art,”
Engineering Reports, vol. 3, no. 4, p. e12298, 2021,
doi: https://doi.org/10.1002/eng2.12298.

N. Pudjihartono, T. Fadason, A. Kempa-Liehr, and J.
O’Sullivan, “A Review of Feature Selection Methods
for Machine Learning-Based Disease Risk
Prediction,” Frontiers in Bioinformatics, vol. 2, p.
927312, Feb. 2022, doi: 10.3389/fbinf.2022.927312.
Y. Feng, L. Feng, S. Liu, S. Kwong, and K. C. Tan,
“Towards multi-objective high-dimensional feature
selection via evolutionary multitasking,” Swarm Evol
Comput, vol. 89, p. 101618, 2024, doi:
https://doi.org/10.1016/j.swevo.2024.101618.

J. Xie, X. Li, L. Gao, and L. Gui, “A hybrid genetic
tabu search algorithm for distributed flexible job
shop scheduling problems,” J Manuf Syst, vol. 71,
pp. 82-94, 2023, doi:
https://doi.org/10.1016/j.jmsy.2023.09.002.

H. Alabool, D. Al- Arabiat, L. Abualigah, and A. A.
Heidari, “Harris hawks optimization: a
comprehensive review of recent variants and

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

200


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

applications,” Neural Comput Appl, vol. 33, Feb.
2021, doi: 10.1007/s00521-021-05720-5.

M. H. Nadimi-Shahraki, H. Zamani, Z. Asghari
Varzaneh, and S. Mirjalili, “A Systematic Review of
the Whale Optimization Algorithm: Theoretical
Foundation, Improvements, and Hybridizations,”
Archives of Computational Methods in Engineering,
vol. 30, no. 7, pp. 4113-4159, 2023, doi:
10.1007/s11831-023-09928-7.

M. Al Shinwan et al., “Dragonfly algorithm: a
comprehensive survey of its results, variants, and
applications,” Multimed Tools Appl, vol. 80, Apr.
2021, doi: 10.1007/511042-020-10255-3.

P. Qin, H. Hu, and Z. Yang, “The improved
grasshopper optimization algorithm and its
applications,” Sci Rep, vol. 11, p. 23733, Apr. 2021,
doi: 10.1038/s41598-021-03049-6.

A. M. Akbar, R. Herteno, S. W. Saputro, M. R. Faisal,
and R. A. Nugroho, “Optimizing Software Defect
Prediction Models: Integrating Hybrid Grey Wolf and
Particle Swarm Optimization for Enhanced Feature
Selection with Popular Gradient Boosting
Algorithm,” Journal of Electronics, Electromedical
Engineering, and Medical Informatics, 2024,
[Online]. Available:
https://api.semanticscholar.org/CorpusID:26970178
5

J. Jui, M. M. I. Molla, M. A. Ahmad, and I.
Hettiarachchi, “Recent Advances and Applications
of the Multi-verse Optimiser Algorithm: A Survey
from 2020 to 2024,” Archives of Computational
Methods in Engineering, Apr. 2025, doi:
10.1007/s11831-025-10277-w.

D. Rawat and P. Singh, “An Effective Algorithm
using Moth Flame Optimization (MFO) for
Numerical Expression Solutions.,” International
Journal For Multidisciplinary Research, 2024,
[Online]. Available:
https://api.semanticscholar.org/CorpusID:26835760
8

T. Thaher, A. A. Heidari, M. Mafarja, and J. Dong,
“Binary Harris Hawks Optimizer for High-
Dimensional, Low Sample Size Feature Selection,”
2020, pp. 251-272. doi: 10.1007/978-981-32-9990-
0_12.

T. Thaher and N. Arman, “Efficient Multi-Swarm
Binary Harris Hawks Optimization as a Feature
Selection Approach for Software Fault Prediction,”
Feb. 2020. doi: 10.1109/ICICS49469.2020.239557.
X. Xiaolong, C. Wen, and W. Xinheng, “RFC: A
feature selection algorithm for software defect
prediction,” Journal of Systems Engineering and
Electronics, vol. 32, no. 2, pp. 389-398, 2021, doi:
10.23919/JSEE.2021.000032.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

H. Ghinaya, R. Herteno, M. R. Faisal, A. Farmadi,
and F. Indriani, “Analysis of Important Features in
Software Defect Prediction Using Synthetic Minority
Oversampling Techniques (SMOTE), Recursive
Feature Elimination (RFE) and Random Forest,”
Journal of Electronics, Electromedical Engineering,
and Medical Informatics, vol. 6, no. 3, pp. 276—288,
May 2024, doi: 10.35882/jeeemi.v6i3.453.

J. Magidi, L. Nhamo, S. Mpandeli, and T.
Mabhaudhi, “Application of the Random Forest
Classifier to Map Irrigated Areas Using Google
Earth Engine,” Remote Sens (Basel), vol. 13, no. 5,
2021, doi: 10.3390/rs13050876.

A. Przybys-Mataczek, I. Antoniuk, K. Szymanowski,
M. Kruk, and J. Kurek, “Application of Machine
Learning Algorithms for Tool Condition Monitoring in
Milling Chipboard Process,” Sensors, vol. 23, p.
5850, Apr. 2023, doi: 10.3390/s23135850.

M. Azzeh, Y. Elsheikh, A. Nassif, and L. Angelis,
“Examining the Performance of Kernel Methods for
Software Defect Prediction Based on Support
Vector Machine,” Sci Comput Program, vol. 226, p.
102916, Feb. 2022, doi:
10.1016/j.scico.2022.102916.

A. Alazba and H. Aljamaan, “Software Defect

Prediction Using Stacking Generalization of
Optimized Tree-Based Ensembles,” Applied
Sciences, vol. 12, no. 9, 2022, doi:
10.3390/app12094577.

M. Altalhan, A. Algarni, and T. Monia, “Imbalanced
Data Problem in Machine Learning: A Review,” IEEE
Access, vol. PP, p. 1, Apr. 2025, doi:
10.1109/ACCESS.2025.3531662.

M. Ali, T. Mazhar, A. Al-Rasheed, T. Shahzad, Y.
Yasin Ghadi, and M. Amir Khan, “Enhancing
software defect prediction: a framework with
improved feature selection and ensemble machine
learning,” Peerd Comput Sci, vol. 10, p. e1860, Feb.
2024.

A. O. Balogun et al., “Software Defect Prediction
Using Wrapper Feature Selection Based on
Dynamic Re-Ranking Strategy,” Symmetry (Basel),
vol. 13, no. 11, 2021, doi: 10.3390/sym13112166.

AUTHOR BIOGRAPHY

Achmad Fauzan Luthfi is a Computer
Science student at the Faculty of
Mathematics and Natural Sciences,
Universitas Lambung Mangkurat, where
he has been pursuing his studies since
2021. He has a strong interest in software

engineering and software defect prediction (SDP). In
2023, he participated in the Bangkit program (batch 2),
organized by Google Indonesia, specializing in Machine
Learning with TensorFlow. In mid-2024, he completed a

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

201


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

four-month internship, during which he was involved in an
Android application development project using Flutter. He
is currently exploring backend development, focusing on
JavaScript and its various supporting frameworks. He can
be contacted via email at:

2111016210004@mhs.ulm.ac.id.

Rudy Herteno received his bachelor’s
degree in Computer Science from
Lambung Mangkurat University in 2011.
After completing his studies, he worked
as a software developer for several years
to gain more experience in the field.
During this period, he developed various
software applications, particularly to
support the needs of local governments. In 2017, he
obtained a master's degree in Informatics from STMIK
Amikom University. Currently, he is a lecturer in the
Computer Science program at Lambung Mangkurat
University. His research interests include software
engineering, software defect prediction, and deep
learning, aiming to improve software quality, optimize
error detection in systems, and develop artificial
intelligence-based solutions.He can be contacted at
email: rudy.herteno@ulm.ac.id.

Friska Abadi finished his bachelor's
degree in Computer Science from
Lambung Mangkurat University in 2011.
Subsequently, in 2016, he obtained his
master's degree from the Department of
Informatics at STMIK Amikom,
Yogyakarta. Following that, he joined
Lambung Mangkurat University as a
lecturer in Computer Science. As a lecturer he teaches
programming. Apart from that, he also carries out
research and community service. Other activities as an
application developer, whether using a web or mobile
platform. Currently, he holds the position of head of the
software engineering laboratory. His current area of
research revolves around software engineering and also
interested in machine learning. He can be contacted at
email: friska.abadi@ulm.ac.id.

Radityo Adi Nugroho received his
bachelor's degree in Informatics from the
Islamic University of Indonesia and a
master's degree in Computer Science
from Gadjah Mada University. Currently,
he is an assistant professor in the
Department of Computer Science at
Lambung Mangkurat University. His
research interests include software defect prediction and
computer vision. He can be contacted at email:
radityo.adi@ulm.ac.id.

Muhammad Itgan Mazdadi, a lecturer in
the Department of Computer Science,
Lambung Mangkurat University. His
research interest is centered on Data
Science and Computer Networking.
Before becoming a lecturer, he
completed his undergraduate program in
the Computer Science Departmentat
Lambung Mangkurat University In 2013. He then
completed his master’s degree from Department of
Informatics at Islamic Indonesia University, Yogyakarta.
Currently, he serves as the Secretary of the Computer
Science Department at Lambung Mangkurat University.
He can be contacted at email: mazdadi@ulm.ac.id.

Professor Dr. Vijay Anant Athavale
is a distinguished academic and
professional with extensive
experience in computer science and
engineering. He holds a Ph.D. in
Computer Science from Barkatullah
University, Bhopal, and has served in
various prestigious roles, including Dean of Engineering
and Professor at Panipat Institute of Engineering &
Technology, Haryana and Department of Computer
Science and Engineering, Walchand Institute of
Technology, Solapur, Maharashtra, India. Dr. Athavale
has been a key figure in numerous institutions,
contributing significantly to their academic and
administrative advancements. He is a life member of
several professional bodies, such as the Computer
Society of India and ISTE. His research interests include
machine learning, loT, and data management, with
numerous publications and patents to his name. Dr.
Athavale has also chaired and organized several
international conferences, reflecting his commitment to
advancing technology and education.

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,

Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

202


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/
mailto:2111016210004@mhs.ulm.ac.id
mailto:rudy.herteno@ulm.ac.id
mailto:friska.abadi@ulm.ac.id
mailto:radityo.adi@ulm.ac.id
mailto:mazdadi@ulm.ac.id

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics  e-ISSN: 2656-8624
Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.

https://doi.org/10.35882/f2140043

Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

203


https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

