
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

188

 RESEARCH PAPER OPEN ACCES

Enhancing Software Defect Prediction: HHO-
Based Wrapper Feature Selection With Ensemble
Methods

Achmad Fauzan Luthfi1 , Rudy Herteno1 , Friska Abadi1 , Radityo Adi Nugroho1 , Muhammad
Itqan Mazdadi1 , and Vijay Anant Athavale2

1 Department of Computer Science, Lambung Mangkurat University, Kalimantan Selatan, Indonesia
2 Department of Computer Science and Engineering, Walchand Institute of Technology, Solapur, Maharashtra, India

ABSTRACT

The growing complexity of data across domains highlights the need for
effective classification models capable of addressing issues such as class
imbalance and feature redundancy. The NASA MDP dataset poses such
challenges due to its diverse characteristics and highly imbalanced classes,
which can significantly affect model accuracy. This study proposes a robust
classification framework integrating advanced preprocessing, optimization-
based feature selection, and ensemble learning techniques to enhance
predictive performance. The preprocessing phase involved z-score
standardization and robust scaling to normalize data while reducing the impact
of outliers. To address class imbalance, the ADASYN technique was employed.
Feature selection was performed using Binary Harris Hawk Optimization
(BHHO), with K-Nearest Neighbor (KNN) used as an evaluator to determine the
most relevant features. Classification models including Random Forest (RF),
Support Vector Machine (SVM), and Stacking were evaluated using
performance metrics such as accuracy, AUC, precision, recall, and F1-measure.
Experimental results indicated that the Stacking model achieved superior
performance in several datasets, with the MC1 dataset yielding an accuracy of
0.998 and an AUC of 1.000. However, statistical significance testing revealed
that not all observed improvements were meaningful; for example, Stacking
significantly outperformed SVM but did not show a significant difference when
compared to RF in terms of AUC. This underlines the importance of aligning
model choice with dataset characteristics. In conclusion, the integration of
advanced preprocessing and metaheuristic optimization contributes positively
to software defect prediction. Future research should consider more diverse
datasets, alternative optimization techniques, and explainable AI to further
enhance model reliability and interpretability.

PAPER HISTORY

Received Feb. 10, 2025
Accepted April 11, 2025

Published April 23, 2025

KEYWORDS

Harris Hawk Optimization;

Feature Selection;

Ensemble Methods;

Preprocessing;

Stacking

CONTACT:

2111016210004@mhs.ulm.ac.id

rudy.herteno@ulm.ac.id

friska.abadi@ulm.ac.id

radityo.adi@ulm.ac.id

mazdadi@ulm.ac.id

1. INTRODUCTION

The quality of software is the most critical aspect of
software development. It refers to how well a software
program meets the needs or expectations of users,
whether explicitly stated or implied. This has a significant
impact on businesses, as it can either strengthen or harm
a company’s brand image [1]. The distribution of defects
across software modules can vary significantly.
Consequently, applying the same testing effort to all
modules within a software project may result in excessive
costs and suboptimal outcomes [2]. Software fault
prediction represents a systematic methodology that
incorporates a range of framework, techniques, and
assessment criteria [3]. To address the task of software

defect prediction, researchers have employed statistical
analysis, machine learning techniques, and, more
recently, deep learning approaches [4]. Identifying
defective modules is a critical step in test planning. This
necessity has driven the development of automated
software defect prediction (SDP) processes that leverage
metrics derived from historical data. As a result, defect
prediction using machine learning techniques has
become a prominent research focus, aiming to reduce
manual effort in identifying various types of defects in
software applications [5]. Early defect prediction enables
timely rectification, contributing to the delivery of
maintainable software. It allows managers to allocate
testing resources effectively, developers to focus on

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

189

auditing defect-prone code, and testers to prioritize their
efforts and resources based on defect-proneness data [6].

The performance of predicting software issues is

influenced through how defective data features are

represented [7]. Consequently, it is crucial to eliminate

non-essential features during the development of the

software framework, as these features can introduce

noise, increase computational complexity, and reduce the

overall accuracy of the model [8]. Feature selection aims

to improve the accuracy of Software Defect Prediction

(SDP) models by eliminating irrelevant features, thereby

reducing the computational complexity and execution

time of these algorithms. The three primary approaches

to feature selection are the wrapper method, the

embedded method, and the filter method. The filter

technique evaluates and assigns a score to each feature

in the dataset. In contrast, the wrapper technique utilizes

classifiers to assess the outcomes of feature selection [9].

Among the different methodologies, wrapper-based

techniques stand out as the most widely adopted.

Extensive research has revealed that these techniques

can effectively minimize the number of features while

improving diagnostic accuracy. However, they are not

without their difficulties. Typically, these methods utilize

heuristic algorithms for feature selection (FS), which can

lead to increased computational demands. Moreover,

heuristic algorithms often exhibit sensitivity to their

parameter settings, which can cause fluctuations in

performance. To address these issues, a new approach

known as the Binary Harris Hawks Optimization (BHHO)

algorithm has been developed. [10].

Harris Hawks Optimization (HHO) is a recently

developed swarm-based algorithm and has gained

significant popularity in recent years. It simulates the

cooperative hunting behavior of Harris hawks to solve

optimization problems effectively [11]. Among the

mentioned algorithms, the HHO algorithm is a novel

metaheuristic approach developed by Heidari et al. [12] in

2019, inspired by the cooperative hunting behavior of sky

predators. Due to its effective simulation of the hawks'

chasing strategies, this method demonstrates highly

competitive performance on certain optimization

problems.

Each time a new subset of features is selected, it is

used to train the model. The trained model is then tested

on a separate test set to directly identify the optimal

feature subset from all available features in the dataset

[13]. A Software Defect Prediction (SDP) model generally

consists of three main components: machine learning

algorithms to process and analyze data, soft computing

techniques to address uncertainty and complex

relationships, and software metrics that represent

measurable attributes of the code. These metrics are

used to train the machine learning algorithms, enabling

them to detect patterns and predict potential defect-prone

areas in the code [14]. The process of building a metrics

model for software involves collecting metric features to

predict defects. However, this approach is often

ineffective for projects or versions that vary significantly.

To address this limitation, researchers have introduced

change metrics to improve the accuracy of defect

prediction. Despite its advantages, this technique is less

suitable for complex systems in large-scale industries, as

it tends to be time-consuming and inefficient. Predicting

defects early in the software implementation process

helps reduce both implementation and computation costs

[7-10].

Forecasting software defects is crucial in the process

of Software Development by identifying modules that

need thorough testing. Machine learning (ML) techniques,

particularly supervised and unsupervised learning, are

widely applied for prediction, along with other approaches

like semi-supervised and reinforcement learning [15].

Among these, classification methods are the most

commonly used for software defect prediction [16]. To

improve accuracy, these methods are often integrated

with feature selection processes, which focus on

identifying the most relevant features while removing

those that negatively impact performance.

Researchers have highlighted the issue of class

imbalance adversely impacts the forecasting accuracy of

software fault prediction models. This situation arises

when there is an imbalance in the dataset, characterized

by a notable difference in the quantity of data between the

majority and minority classes [17]. In many cases, class

imbalance leads to overfitting, rendering these models

unreliable. To mitigate this issue, researchers have

proposed primary solutions such as data selection,

combined techniques, and expense-sensitive

assessment [18]. Researchers have explored various

approaches to solve the class disparity issue. Singh,

Misra, and Sharma [19] carried out research on

automating bug severity prediction through summaries

derived from bug metrics. To handle the inherent class

imbalance in the generated bug dataset, they employed

ensemble methods, specifically Voting and Bagging. Their

findings demonstrated that ensemble methods

outperformed single classifiers, indicating that ensemble

approaches are effective in dealing with class imbalance

issues. The ensemble learning model is constructed by

combining several machine learning classifiers to

enhance predictive performance [20]. A substantial body

of empirical research conducted over the past decade

indicates that ensemble methods consistently achieve

higher classification accuracy than their individual

classifier counterparts [21].

The previous study by Mohammad et al. [14], the

authors developed a multi-objective hybrid approach that

integrates Hawk Optimization with adaptive synthetic

sampling techniques. This model was assessed using

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

190

various performance metrics, including Area Under the

Curve (AUC), precision, recall, and F-measure. Notably,

when applied to a healthcare dataset, the model achieved

an impressive AUC score of 0.992 and a classification

accuracy of 0.99, demonstrating its effectiveness in

addressing the challenges of defect prediction in

healthcare systems. The primary objective of this

research is to identify pertinent features that can

effectively predict software defects within healthcare

systems, alongside exploring machine learning

algorithms that enhance the accuracy of software defect

prediction (SDP). The main contributions of this study are

outlined as follows:

1. The proposed methodology demonstrates

competitive accuracy in Software Defect

Prediction by combining advanced preprocessing,

metaheuristic-based feature selection using

Binary Harris Hawk Optimization (BHHO), and

ensemble learning techniques.

2. The application of BHHO for feature selection

enables the identification of relevant features while

reducing redundancy, which contributes to

improving the model’s ability to generalize and

reducing overfitting risks across diverse datasets.

3. The framework’s effectiveness across multiple

NASA MDP datasets shows its potential for

enhancing defect prediction tasks. However,

findings also emphasize that model selection and

performance vary with dataset characteristics, and

should be validated with statistical significance

testing.

This study is organized as follows: Section II provides

an overview of the dataset utilized and the proposed

methodologies. Section III presents the results of the

proposed methods, focusing on accuracy and AUC, along

with optimization parameters such as precision, recall,

and F1-measure. Section IV offers an interpretation of the

results, comparing them with findings from other studies

while also addressing any limitations encountered. Finally,

Section V concludes the study by summarizing the

objectives, key findings, and suggestions for future

research directions.

2. MATERIALS AND METHOD

The proposed method in this research begins with the
utilization of the NASA MDP dataset. Initially,
preprocessing is conducted, which includes data
transformation through z-score standardization, ensuring
that all values have a mean of 0 and a standard deviation
of 1. This step reduces the influence of dimensionality and
plays a crucial role in outlier detection, as Z-scores
significantly distant from 0 may indicate the presence of
outliers. Following this, scaling techniques such as robust
scaling are applied to center the data around zero and
adjust it to a more consistent scale, thereby minimizing

the impact of extreme values on the results.
Subsequently, sampling techniques like ADASYN are
employed to address class imbalance, enhancing the
classifier's performance. Then, Feature selection
performed using a wrapper method, specifically
employing binary Harris Hawk Optimization (BHHO) with
KNN as the evaluator for feature selection. The log loss
function is utilized as the objective function in the binary
HHO process. The model is subsequently tested using
various classification and ensemble algorithms, including
Random Forest (RF), Support Vector Machine (SVM),
and Stacking. Finally, the model's performance is
evaluated using metrics such as Area Under the Curve
(AUC) and accuracy. Fig. 1 illustrates the research flow
adopted in this study.

A. Dataset

The prediction of software defects is conducted by

leveraging datasets from previous software projects [22].

One of the most frequently utilized datasets is the National

Aeronautics and Space Administration (NASA) dataset,

which is well-known and widely used in the development

of defect prediction models due to its public accessibility.

In total, dataset used for NASA benchmarks comprises 13

distinct software projects, each representing a specific

software system or subsystem developed by NASA. This

dataset includes a wide range of instances, from 127 to

9,277, and features 20 to 40 metrics that focus on

identifying defects and analyzing static code.

Furthermore, a bug tracking system is utilized to keep

Fig. 1. Flowchart illustrating the research
methodology based on the proposed approach.

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

191

track of the number of errors for each instance. The

quality of the software is closely tied to key static code

metrics, which encompass aspects such as size,

readability, and complexity. However, this dataset

presents challenges related to data imbalance, where the

quantity of non-defective instances greatly exceeds that

of the faulty ones, along with those presence of noise

disturbances. This imbalance poses a common

challenge, as prediction outcomes tend to be biased

towards the non-defective class. To address this issue, it

is essential to adjust prediction techniques by integrating

or combining other algorithms [23].

Two class labels from NASA MDP dataset comprises:
“Y” (representing defective) and “N” (representing non-
defective). In the preprocessing phase, these categorical
labels were transformed into numeric values, where Y is
encoded as 1 and N is encoded as 0 [24]. This conversion
facilitates the application of various machine learning
algorithms that require numerical input for effective
processing and analysis. The version of the NASA MDP
dataset utilized in this research is D'', sourced from
(https://github.com/klainfo/NASADefectDataset). The
data volume for each dataset is presented in Table 1.

Table 1. Detailed information regarding the NASA
MDP Dataset, including its characteristics and
relevant metrics.

Dataset

Number

of

features

Sample

sizes

Number

of

Defects

Defects

(%)

CM1 38 327 42 12.8

JM1 22 7720 1612 20.8

KC1 22 1162 294 25.3

KC3 40 194 36 18.5

MC1 38 1988 46 2.3

MC2 40 124 44 35.4

MW1 38 253 27 10.7

PC1 38 705 61 9.7

PC2 37 722 16 2.2

PC3 38 1077 134 12.4

PC4 38 1270 176 13.8

PC5 39 1694 458 27.0

In this study, the labels in the MC1 dataset were
transformed, with the designation "Y" converted to "1" and
"N" converted to "0." This modification is illustrated in
Table 2 and Table 3.

B. Data Transformation

This process is crucial to ensure that the data used in the

model is high quality, thereby enabling accurate results.

By applying appropriate transformations, the impact of

outliers can be minimized, distributions can be

normalized, and the model's performance in predicting

defects can be effectively enhanced [25]. Before

preprocessing, the data was split in a 70:30 ratio, with

70% allocated for training and 30% for testing, using

random_state=42 to ensure reproducibility. Then the

technique standardizes feature values to have a mean of

0 and a standard deviation of 1 using the formula as

shown in Eq. (1).

𝑋𝑛𝑒𝑤 = 𝑋 − 𝑋̅

𝜎
 (1)

Xnew represents the standardized value indicating how far

the original value X is from the mean 𝑋̅ in terms of

standard deviation σ. This is achieved by subtracting the
mean from the original value and dividing by the standard
deviation, resulting in a value that reflects the relative
deviation from the mean. This transformation is crucial for
standardizing data, ensuring a mean of 0 and a standard
deviation of 1, and is effective for detecting outliers, as Z
values far from 0 may indicate their presence. In the
implementation, Z-scores were calculated using the
stats.zscore function from the SciPy library. To identify
and handle outliers, a threshold of 2 was set, meaning any
data point with a Z-score greater than this threshold is
considered an outlier. Consequently, an outlier mask was
created to filter out these points, ensuring that only data
within the threshold is retained for training. This approach
is used due to its effectiveness in standardizing the
dataset, minimizing the impact of outliers, and ensuring
that the features are on a comparable scale, which
ultimately enhances the model's predictive performance.

C. Scalling Techniques

The performance of machine learning models is

influenced by various factors, including the scale of

features in the dataset. Feature scale differences can

cause inaccuracies by favoring larger values.

Table 2. Overview of the CM1 Dataset Labels Before Preprocessing: Original Categorical Labels and Their
Corresponding Numeric Transformations

id LOC_BLANK BRANCH_COUNT … NUM_UNIQUE_OPERATORS LOC_TOTAL label

0 3 1 … 5 17 N

1 3 3 … 14 14 N

2 1 5 … 9 13 N

… … … … … … …

7718 9 35 … 38 60 N

7719 3 15 … 17 30 N

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/klainfo/NASADefectDataset

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

192

Table 3. Overview of the CM1 Dataset Labels After Preprocessing: Numeric Representations of Categorical
Labels Following Transformation

id LOC_BLANK BRANCH_COUNT … NUM_UNIQUE_OPERATORS LOC_TOTAL label

0 3 1 … 5 17 0

1 3 3 … 14 14 0

2 1 5 … 9 13 0

… … … … … … …

7718 9 35 … 38 60 0

7719 3 15 … 17 30 0

To address this, scaling techniques are employed to
ensure all features have a uniform range of values [26].
The Robust Scaler minimize the impact of outliers by
centering data around the median (the second quartile,
Q2(x)) and scaling based on the interquartile range. The
interquartile range is the difference between the first
quartile Q1(x) and the third quartile Q3(x), shown in the
Eq. (2).

𝑥′𝑖 =
𝑥𝑖 − 𝑄2(𝑥)

𝑄3(𝑥) − 𝑄1(𝑥)
 (2)

This method standardizes 𝑥′𝑖 by subtracting the median

Q2(x) from the original value xi and dividing by the
interquartile range. This centers the data around the
median and adjusts the scale to be more consistent,
reducing the influence of extreme values. ppp In the
implementation, the RobustScaler from the Scikit-learn
library was initialized with the following parameters:
with_centering set to True to center the data around the
median, with_scaling set to True to scale the data to the
interquartile range, and the quantile_range set to the
default of (25.0, 75.0) to calculate the IQR. The copy
parameter was set to True, ensuring that a copy of the
data is created during scaling, while unit_variance was set
to False, meaning the data would not be scaled to achieve
a variance of 1 for normally distributed features. This
approach is used due to its ability to minimize the impact
of outliers by centering the data around the median and
scaling based on the interquartile range, ensuring that the
model remains robust and accurate even in the presence
of extreme values.

D. Sampling Techniques

The performance of classifiers is influenced by various

factors, including the number of samples and the types of

classes analyzed. Data imbalance occurs when the

minority class has significantly fewer instances than the

majority class, leading to challenges for machine learning-

based classifiers and diminishing their overall

effectiveness. Numerous studies have explored this issue

and proposed solutions, with Bowyer identifying two

primary approaches: data-based and algorithm-based

methods [9]. The data-based approach focuses on

balancing class distribution through resampling

techniques, which can involve over-sampling the minority

class or under-sampling the majority class, either

randomly or systematically. Various methods have been

suggested to address imbalanced data, including

ADASYN, SMOTE, and Random Oversampling [27].

Adaptive Synthetic Sampling (ADASYN) is a method

aimed at addressing dataset imbalance to improve

classifier performance (Algorithm 1). It synthesizes

minority class samples based on their distribution in the

training dataset, focusing more on difficult-to-learn

samples and less on easier ones. The approach

determines a probability distribution to generate additional

minority class samples, resulting in a more balanced

dataset [14]. This mechanism ensures that the distribution

of new samples reflects the existing data patterns,

particularly in the minority class, thereby enhancing class

balance without losing important information. The

parameters used in the ADASYN implementation include

sampling_strategy ='auto', which automatically targets the

majority class for resampling, ensuring a balanced class

distribution. Additionally, random_state=42 is set to

control the randomization of the algorithm, allowing for

reproducible results. The n_neighbors parameter is set to

5, indicating that five nearest neighbors will be used to

define the neighborhood of samples for generating

synthetic samples. This configuration is chosen to

enhance the model's ability to learn from the minority

class, thereby improving overall classifier performance

while maintaining the integrity of the data distribution. The

following provides a more detailed explanation of how the

ADASYN technique is implemented in the pseudocode

presented.

E. Feature Selection

In classification, techniques for feature selection are
primarily grouped into three categories: filter methods,
wrapper methods, and embedded methods [28]. Key
differences include whether selection is performed
separately or integrated with the learning algorithm, the
evaluation metrics used, computational complexity, and
the ability to detect redundancy and feature interactions.
Filter methods evaluate features based on their
relationships and are generally faster, while wrapper
methods use learning algorithms for evaluation and tend

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

193

to be more accurate [29]. Feature selection (FS)
algorithms are divided into two main categories: exact
algorithms and meta-heuristic search algorithms [9].
Meta-heuristic algorithms typically outperform exact
methods, especially for complex problems. They are
further classified into single-solution algorithms, such as
Tabu Search [30], which emphasize exploitation, and
population-based algorithms, like Harris Hawks
Optimization (HHO) [31], which focus on exploration.

While population-based algorithms explore broader
search areas and yield more accurate results, single-
solution algorithms generally execute faster. Binary
encoding is a simple approach for FS, where 0 indicates
a feature is not selected and 1 indicates it is selected. The
application of feature selection (FS) algorithms will select
m features from the original n features, where m ≤ n.

Algorithm1. Adaptive Synthetic

Input:

• Dataset S1 with n samples vi and labels wi (0 for minority class, 1 for majority class).
Output:

• New synthetic data.
Steps:

1. Calculate Class Imbalance:

• Find the ratio of minority to majority samples.
2. Determine Total Samples to Synthesize:

• Calculate S = (n1 - n2) * β, where n1 is the number of minority samples, n2 is the number of majority
samples, and β is a coefficient.

3. For Each Minority Sample vi:

• Identify the K nearest neighbors.

• Calculate the ratio ri = Δi / K, where Δi is the number of observations in the K-nearest neighbors.

• Normalize ri to create a probability distribution: ri = ri / Σri.

• Compute si = ri * S, indicating the total synthetic samples needed for each minority sample vi.
4. Generate Synthetic Samples:

• For m = 1, 2, …, si:

• Randomly select a sample vm from the K-nearest neighbors of vi.

• Create a synthetic sample vq using the formula: vq = vi + (vi - vm).
5. End of Algorithm.

The Harris Hawks Optimizer (HHO) was selected over
other metaheuristic algorithms due to its innovative
design that incorporates two distinct exploration phases
and four exploitation phases, enhancing its ability to
navigate complex search spaces effectively. While
numerous well-established algorithms such as the Whale
Optimization Algorithm (WOA) [32], Dragonfly Algorithm
(DA) [33], Grasshopper Optimization Algorithm (GOA)
[34], Grey Wolf Optimizer (GWO) [35], Multi-Verse
Optimizer (MVO) [36], and Moth-Flame Optimizer (MFO)
[37] demonstrate robust search capabilities, HHO's
unique structure allows for a more refined balance
between exploration and exploitation. This capability
enables HHO to achieve superior performance in solving
diverse mathematical and engineering problems, making
it a compelling choice for applications requiring high-
quality solutions within reasonable computational
timeframes.

F. Harris Hawk Optimization

Harris Hawk Optimization (HHO) is a novel optimization
algorithm inspired by the hunting dynamics between
hawks and rabbits. Its mathematical foundation allows it
to effectively tackle various constrained and
unconstrained problems. The algorithm updates search
agents through two exploration phases and four

exploitation phases [38]. Harris Hawk Optimization (HHO)
was initially designed to operate in continuous search
spaces. However, real-world problems like feature
selection require binary search spaces. To address this,
the algorithm has been efficiently reformulated to function
in binary spaces. In several studies, a two-phase
binarization technique has been employed to present a
binary variant of HHO, referred to as Binary Harris Hawk
Optimization (BHHO) [39]. Wrapper-based feature
selection using Binary Harris Hawk Optimization (BHHO)
is combined with the K-Nearest Neighbor (KNN) classifier
as the evaluator with default parameters (n_neighbors=5)
as the evaluator for HHO. KNN is selected for its simplicity
and common use as a non-parametric classification
technique, and it has shown competitive performance in
various studies compared to other feature selection
methods [38]. BHHO is specifically designed to handle
binary problems, making it ideal for scenarios where the
solution requires a binary decision, such as selecting or
rejecting features. When adapting metaheuristic
algorithms for optimization, two key aspects are crucial:
solution representation and the objective function.

Solution Representation: In feature selection (FS), each

feature can be either selected or not, represented as a

binary vector X={x1,x2,…,xN}, total count of features

represent with N.

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

194

Target function: Guiding the search process is crucial by

assessing candidate solutions according to their quality.

The main aim of feature selection (FS) is to minimize the

count of chosen features while improving classification

effectiveness. This research, a single-target HHO

algorithm is utilized, with the objective function specified

as Log Loss, as illustrated in Eq. (3).

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦) log(1 − 𝑝𝑖)]

𝑁

𝑖=1

 (3)

N represents the total number of samples, yi is the actual
class label (0 or 1), and pi is the predicted probability of
the class. Log Loss measures the performance of the
model, providing a lower value for better classification
accuracy. Python library for performing feature selection
using a variety of nature inspired wrapper algorithms is
taken from (https://github.com/jaswinder9051998/zoofs).
In this research, the parameters proposed by the HHO
algorithm, specifically a population size of 10 and 30
iterations by previous analyses [14] have indicated that
this combination yields the optimal performance for the
predictive model.

G. Classification

Random Forest (RF) and Support Vector Machine (SVM)
are the two key classifiers employed to differentiate
between software modules with defects and those
without. These methodologies are integral to machine
learning (ML) and demonstrate substantial effectiveness
in classification performance. Their primary goal is to
identify patterns that indicate specific classes, connecting
each data instance to the existing dataset [40].

1. Random Forest

Random Forest (RF) is an ensemble method that consists
of multiple decision trees, combining their predictions to
improve accuracy and robustness [41]. It effectively
handles datasets with many irrelevant attributes by
selecting the most informative ones for classification. RF
constructs decision trees by randomly sampling data
subsets and mapping them to randomly chosen feature
subspaces [42]. Random Forest is represented in Eq. (4).

{𝐷𝑇(𝑥, 𝜃𝑘)}
𝑇

𝑘 = 1
 (4)

In this equation, the k-th decision tree is trained with input
data x and random parameters 𝜃𝑘, which include a subset

of data from bagging and a random subset of features at
each node. By building T independent decision trees,
predictions are combined using majority voting for
classification or averaging for regression, improving
model accuracy and reducing the risk of overfitting. In this
Random Forest implementation, the parameters used are
n_estimators=1000 [43], which specifies the number of
trees in the forest to enhance predictive accuracy.
Additionally, max_depth=None allows the trees to grow
until all leaves are pure, ensuring that the model captures
the complexity of the data. The parameter

min_samples_leaf=1 is also set, which specifies the
minimum number of samples required to be at a leaf node.
This configuration is designed to optimize the model's
performance by balancing accuracy and robustness.

2. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine
learning algorithm used for both classification and
regression tasks [44]. SVM creates an optimal hyperplane
to efficiently differentiate data sample into separate
classes by transforming them into an expanded-
dimensional space. This method is especially effective for
two-class classification applications with significant
dimensionality, rendering it useful for applications such as
Software Defect Prediction (SDP). SVM's ability to handle
complex, non-linear data and maximize the margin
between classes enhances its generalization capabilities,
contributing to its widespread use in fields such as image
processing and bioinformatics. Support Vector
Classification (SVC) is a classification method that utilizes
the Support Vector Machine (SVM) algorithm to separate
data into classes. It can employ various kernels, including
linear, polynomial, and radial basis function (RBF)
kernels. RBF SVC is particularly effective for non-linearly
separable data, as it measures the distance between data
points and class centers, allowing for complex decision
boundaries. Its strengths include handling intricate
patterns, flexibility in adjusting parameters γ and C, and
strong performance in applications such as text, image,
and medical data analysis. The RBF kernel equation is
represented in Eq. (5).

𝐾(𝑥, 𝑦) = 𝑒−𝛾‖𝑥−𝑦‖2
 (5)

γ is a parameter that controls the influence of a single
training example. A small value of γ results in smoother
decision boundaries, while a larger value leads to sharper
decision boundaries. This parameter plays a crucial role
in determining the model's flexibility and its ability to
generalize from the training data. In the implementation
we used the default parameters used include C=1.0,
which serves as the regularization parameter, controlling
the trade-off between achieving a low training error and a
low testing error. The kernel='rbf' is specified as the kernel
type, which is particularly effective for handling non-linear
relationships in the data. Additionally, random_state=42 is
set to ensure reproducibility of results by controlling the
randomness in the algorithm. The probability=True
parameter is also included, allowing the model to output
probability estimates for the predictions. This
configuration is designed to optimize the model's
performance while providing reliable probability estimates
for classification tasks.

3. Stacking

Stacking is a heterogeneous ensemble model that
combines multiple base classifiers through a meta-
classifier to produce a final prediction model [45]. The
base classifiers use different learning algorithms and are
trained on the entire dataset, while their outputs serve as
the training data for the meta-classifier to build the final
model. In the implementation, the estimators parameter is

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/jaswinder9051998/zoofs

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

195

defined as a list of tuples, where each tuple consists of a
string (name) and an estimator instance. For example, the
base estimators include a RandomForestClassifier with
random_state=42 and an SVC with probability=True and
random_state=42. This combination allows for diverse
learning algorithms to be stacked together. The
final_estimator parameter is set to a classifier that will be
used to combine the outputs of the base estimators,
effectively creating a robust ensemble model. This
configuration enhances the model's predictive
performance by leveraging the strengths of multiple
classifiers.

H. Evaluation Metrics

Assessment metrics such as accuracy, specificity,

sensitivity, precision, and ROC-AUC are integral to

prediction and classification. This study focuses on

analyzing the suggested framework through accuracy and

AUC values, utilizing ROC-AUC, which is frequently

applied in the context of software defect prediction. AUC

useful in class imbalance situations, providing a

comprehensive view of model performance across

thresholds. The calculation of AUC is based on the ratio

of false positive rates to true positive rates. Accuracy

serves as a measurement that effectively differentiates

between defective and non-defective software

components. It is computed as the ratio of true positives

to true negatives across all instances, as illustrated in Eq.

(6).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(6)

TP (True Positive) and TN (True Negative) represent

correct predictions for positive and negative classes,

while FP (False Positive) and FN (False Negative)

indicate incorrect predictions. Accuracy measures the

model's effectiveness in classifying data, ranging from 0

to 1, with 1 indicating perfect predictions. AUC (Area

Under the Curve) assesses the model's capability to

distinguish between true positive rates and false positive

rates across different thresholds. A higher AUC value

indicates better model performance in distinguishing

between classes [35]. The AUC is represented in Eq. (7).

𝐴𝑈𝐶 =
1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅

2

(7)

True Positive Rate (TPR) measures the proportion of
correct positive predictions, while False Positive Rate
(FPR) indicates incorrect negative predictions. AUC
ranges from 0 to 1, with 1 representing perfect
performance and 0.5 indicating random predictions. Key
optimization parameters include precision, recall, and F1-
measure. The F1 Score is selected as an evaluation
metric because it effectively balances precision and recall,
making it suitable for imbalanced datasets. Precision
measures the accuracy of positive predictions, while
recall indicates the model's ability to identify all relevant
positive instances. Unlike accuracy, the F1 Score

accounts for both false positives and false negatives,
providing a clearer picture of model performance [46].
Furthermore, in the calculations for AUC and F1-score,
precision reflects how accurately positive instances are
identified among all predicted positives, highlighting the
relevance of using the F1 Score in contexts with uneven
class distributions.

3. RESULTS

This section presents the results of the proposed
framework in a clear and organized manner, using tables
and figures to effectively illustrate key findings. The
evaluation was conducted using the NASA MDP datasets
with the proposed framework implemented in Jupyter
Notebook and tested on a machine with a Ryzen 5 4600H
CPU @ 3.00GHz and 16 GB DDR4 RAM. Performance
was measured using accuracy, precision, recall, F1-
score, and AUC metrics.

To statistically validate the observed differences in
model performance, this study employs independent
samples t-tests. The primary purpose of the t-test is to
determine whether the differences in performance
metrics—particularly accuracy and AUC—between
classifiers are statistically significant or could have
occurred by chance. This allows for a more rigorous and
objective evaluation of model effectiveness beyond
simple numerical comparisons. By applying this test, the
study avoids overclaiming performance advantages and
strengthens the reliability of its conclusions.

A. Selected Features Using BHHO

Table 4 displays the number of features selected by the
Binary Harris Hawk Optimization (BHHO) from each
dataset. These selected features are considered most
relevant to defect prediction.

Table 4. Displays the features that have been selected
for analysis, highlighting their significance and
relevance to the study.

Dataset Features Feature Selection BHHO

CM1 38 26

JM1 22 10

KC1 22 14

KC3 40 26

MC1 38 26

MC2 40 22

MW1 38 21

PC1 38 21

PC2 37 22

PC3 38 25

PC4 38 25

PC5 39 30

The features repeatedly selected across datasets include
metrics such as CYCLOMATIC_COMPLEXITY,

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

196

HALSTEAD_EFFORT, HALSTEAD_ERROR_EST,
LOC_COMMENTS, and LOC_TOTAL. Their frequent
occurrence indicates their relevance in predicting
software defects. For instance, the presence of
LOC_COMMENTS suggests the influence of code
documentation on software quality.

B. Accuracy and AUC Performance

Table 5 provides accuracy and AUC values for three
models: Random Forest (RF), Support Vector Machine
(SVM), and Stacking. These models were applied after
the BHHO-based feature selection process.

Table 5. Results of various classification algorithms
based on the proposed approach are presented,
showcasing their performance and effectiveness in
the analysis.

Data RF SVM Stacking

CM1
Accuracy 0.961 0.868 0.961

AUC 0.982 0.979 0.987

JM1
Accuracy 0.874 0.603 0.875

AUC 0.942 0.648 0.940

KC1
Accuracy 0.834 0.629 0.837

AUC 0.894 0.675 0.893

KC3
Accuracy 0.902 0.902 0.927

AUC 0.974 0.988 0.990

MC1
Accuracy 0.966 0.981 0.998

AUC 1.000 0.998 1.000

MC2
Accuracy 0.952 0.810 0.857

AUC 0.955 0.891 0.945

MW1
Accuracy 0.966 0.862 0.931

AUC 0.996 0.926 0.987

PC1
Accuracy 0.976 0.940 0.964

AUC 0.994 0.990 0.992

PC2
Accuracy 0.956 0.962 0.978

AUC 0.997 0.991 0.999

PC3
Accuracy 0.952 0.865 0.961

AUC 0.994 0.952 0.994

PC4
Accuracy 0.915 0.872 0.918

AUC 0.970 0.935 0.973

PC5
Accuracy 0.816 0.749 0.810

AUC 0.907 0.821 0.902

Stacking and RF consistently achieved the highest

performance. SVM performed notably poorer in datasets

such as JM1, KC1, and PC5, possibly due to suboptimal

parameters or kernel choice. Adjusting model parameters

through grid search or random search may help identify

optimal SVM parameters.

C. Evaluation of Precision, Recall, and F1-Measure

Table 6 presents the precision, recall, and F1-measure of

the three classifiers. These metrics further confirm the

effectiveness of the proposed method with selected

features.

Table 6. The effectiveness and performance of the

optimization parameters were thoroughly evaluated

and analyzed in this study.

Data Precision Recall
F1-

measure

CM1
RF 0.952 0.976 0.964

SVM 0.804 1 0.891
Stacking 0.952 0.976 0.964

JM1
RF 0.901 0.855 0.877

SVM 0.639 0.560 0.597
Stacking 0.900 0.857 0.878

KC1
RF 0.860 0.806 0.832

SVM 0.634 0.650 0.642
Stacking 0.861 0.812 0.836

KC3
RF 1 0.810 0.895

SVM 0.905 0.905 0.905
Stacking 0.95 0.905 0.927

MC1
RF 1 0.993 0.996

SVM 0.965 1 0.982
Stacking 0.996 1 0.998

MC2
RF 1 0.909 0.952

SVM 0.769 0.909 0.833
Stacking 0.833 0.909 0.870

MW1
RF 0.966 0.966 0.966

SVM 0.889 0.828 0.857
Stacking 0.903 0.966 0.933

PC1
RF 0.974 0.974 0.974

SVM 0.893 0.987 0.938
Stacking 0.949 0.974 0.961

PC2
RF 0.940 0.963 0.952

SVM 0.921 1 0.959
Stacking 0.953 1 0.976

PC3
RF 0.935 0.962 0.948

SVM 0.783 0.971 0.867
Stacking 0.952 0.962 0.957

PC4
RF 0.898 0.936 0.917

SVM 0.807 0.979 0.885
Stacking 0.904 0.936 0.920

PC5
RF 0.754 0.885 0.814

SVM 0.701 0.782 0.739
Stacking 0.749 0.878 0.808

D. Visualization of Results

Fig 2 illustrates the accuracy and AUC across

experiments:

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

197

(a)

(b)

Fig. 2. Evaluation of Accuracy and AUC outcomes for
each experiment: (a) Accuracy metrics for all
experiments, (b) AUC metrics for all experiments.

E. Statistical Analysis of Model Performance

Table 7 and Table 8 show the accuracy and AUC scores

obtained across experiments for each classification

model. To further validate the observed performance

differences, a paired t-test was conducted between

models.

Table 7. Statistical comparison of accuracy between

classification models thoroughly evaluated and

analyzed in this study.

Model

Comparison
t-Statistic p-Value

Significant

(p < 0.05)

RF vs SVM 2.231 0.036 Yes

RF vs

Stacking
0.188 0.853 No

SVM vs

Stacking
-2.079 0.049 Yes

Table 8. Statistical comparison of AUC between

classification models thoroughly evaluated and

analyzed in this study.

Model

Comparison
t-Statistic p-Value

Significant

(p < 0.05)

RF vs SVM 1.834 0.080 No

RF vs

Stacking

0.017 0.987 No

SVM vs

Stacking

-1.820 0.082 No

The test compared the accuracy and AUC values across

the Random Forest (RF), Support Vector Machine (SVM),

and Stacking models over twelve datasets. Results

showed that, in terms of accuracy, the differences

between RF and SVM (p = 0.036) and between SVM and

Stacking (p = 0.049) were statistically significant at the 5%

level. These findings indicate that both RF and Stacking

significantly outperformed SVM. However, no significant

difference was found between RF and Stacking (p =

0.853), suggesting their accuracies were statistically

comparable. Regarding AUC, while RF and Stacking

generally outperformed SVM across most datasets, the

differences were not statistically significant. The

comparison between RF and SVM yielded a p-value of

0.080, while that of SVM and Stacking was p = 0.082, both

exceeding the typical 0.05 threshold.

This implies that although trends favored ensemble

methods, the variation in AUC values may not be strong

enough to conclusively assert superiority based on the

available data. These statistical insights reinforce the

robustness of the proposed ensemble methods,

particularly in terms of accuracy, while also cautioning

against over-claims regarding AUC differences without

stronger statistical backing.

4. DISCUSSION

The feature selection results demonstrate that the Binary

Harris Hawks Optimization (BHHO) method not only helps

in reducing model complexity but also contributes to

0.50

0.60

0.70

0.80

0.90

1.00

C
M

1

J
M

1

K
C

1

K
C

3

M
C

1

M
C

2

M
W

1

P
C

1

P
C

2

P
C

3

P
C

4

P
C

5

A
c
c
u
ra

c
y

Dataset

Random Forest SVM Stacking

0.50

0.60

0.70

0.80

0.90

1.00

C
M

1

J
M

1

K
C

1

K
C

3

M
C

1

M
C

2

M
W

1

P
C

1

P
C

2

P
C

3

P
C

4

P
C

5

A
U

C

Dataset

Random Forest SVM Stacking

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

198

improving classification accuracy. Compared to prior

studies using healthcare datasets, the proposed method

exhibits greater efficiency in identifying relevant features.

This directly supports the enhancement of predictive

performance. These findings align well with the research

objectives, demonstrating how selected features

influence classification outcomes. Furthermore, the

consistency of these results with existing literature

underlines the robustness of the BHHO method.

Table 9. Comparison of performance outcomes from
previous studies

Dataset Model AUC Accuracy

Healthcare
[14]

Adasyn +
HHO

0.992 0.990

12 Nasa
MDP

Datasets
(Our)

Z-
transformation

+ Robust
Scaler +
Adasyn +

HHO

0.998 1.000

As shown in Table 9, our method shows higher AUC and

accuracy than the referenced healthcare dataset. While

the healthcare dataset using ADASYN and HHO reached

an AUC of 0.992 and accuracy of 0.990, our approach

achieved 0.998 and accuracy of 1.000 on the NASA MDP

datasets. Although this suggests a potential performance

improvement, caution should be exercised in generalizing

the results due to differences in datasets and

experimental conditions. Among the classifiers, Random

Forest (RF) consistently achieved high accuracy and F1

scores, reaching a maximum F1 of 0.996 on the MC1

dataset. Stacking also maintained competitive

performance, while Support Vector Machine (SVM)

showed high variability, particularly on JM1 and KC1

where its F1-score fell below 0.600. This variability

suggests that SVM may require more careful tuning and

may not generalize as effectively as ensemble methods in

certain contexts.

The use of t-tests further supports the interpretation of

these results. The test confirms statistically significant

differences in accuracy between SVM and ensemble

methods such as RF and Stacking, while differences in

AUC were not statistically significant. These findings

validate the reliability of our results in terms of accuracy

but also emphasize the need for cautious interpretation

when comparing AUC values.

SVM’s weaker performance on datasets like JM1 and

KC1 may be attributed to several factors: sensitivity to

undetected outliers despite preprocessing, limitations in

selected features, suboptimal kernel or parameter

choices, and vulnerability to overfitting or underfitting

depending on dataset size and complexity. This reinforces

the need for careful parameter tuning and appropriate

kernel selection when using SVM in defect prediction.

The proposed methodology contributes to advancing

software defect prediction by integrating HHO-based

feature selection and ensemble classifiers. Statistically

significant improvements in accuracy, and consistent

performance across multiple datasets, support the

hypothesis that this combination enhances defect

prediction. These results validate the framework’s

potential for handling high-dimensional datasets and

improving classifier generalization, within the tested

conditions.

A comparison with recent studies further validates the

effectiveness of the proposed method. Ali et al. [47]

introduced a five-stage framework integrating genetic

algorithm-based feature selection with an ensemble of

Random Forest, SVM, and Naïve Bayes, followed by

majority voting. Their method achieved a maximum

accuracy of 95.1% and reduced training and testing time

by 51.52% and 52.31%, respectively, on NASA datasets

such as CM1, JM1, and PC3. Similarly, Balogun et al. [48]

proposed an Enhanced Wrapper-based Feature

Selection (EWFS) method and evaluated it using Naïve

Bayes and Decision Tree classifiers. Their experiments,

conducted over 25 datasets with 10-fold cross-validation

repeated 10 times, reported average accuracies of

82.57% (NB) and 83.07% (DT), with corresponding AUC

scores of 0.783 and 0.723, and F-measure values of

0.807 and 0.820. Although our method demonstrates

strong performance in this context, further studies are

needed to validate its generalizability across different

datasets and domains.

However, certain limitations must be acknowledged.

The preprocessing pipeline including z-score

normalization, robust scaling, and ADASYN may not

generalize across all datasets. The HHO algorithm, while

effective, can be sensitive to parameter settings, and its

iterative nature increases computational cost.

Additionally, ensemble classifiers, despite their strong

performance, require more computational resources. All

experiments rely on NASA MDP datasets, which may not

fully reflect the diversity of modern software projects.

Broader evaluation on real-world industrial datasets is

recommended.

From a trade-off perspective, while Stacking offers

excellent accuracy and stability, it also introduces greater

training complexity compared to simpler models.

Likewise, feature selection via HHO enhances prediction

but demands more computation. In practical

environments, these trade-offs must be considered based

on context and available resources. The practical

implications are clear: the proposed framework assists in

identifying defect-prone modules early in development,

improving testing efficiency and software quality. Its

adaptability across datasets supports deployment in real-

world CI/CD environments, particularly for organizations

maintaining historical defect data.

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

199

5. CONCLUSION

The primary objective of this research was to develop a
reliable classification model using the NASA MDP dataset
by applying a combination of preprocessing techniques,
feature selection via Binary Harris Hawks Optimization
(BHHO), and classification algorithms such as Random
Forest (RF), Support Vector Machine (SVM), and
Stacking. The study addressed key challenges in
software defect prediction, including class imbalance and
high-dimensional feature spaces, and evaluated model
performance using accuracy, AUC, precision, recall, and
F1-measure.

The findings indicate that the Stacking model achieved
competitive performance across many datasets. For
example, in the MC1 dataset, Stacking achieved an
accuracy of 0.998 and an AUC of 1.000. It also showed
high precision (0.996), recall (1.000), and F1-measure
(0.998), reflecting strong performance in balancing
sensitivity and specificity. However, it is important to
interpret these results within the context of the tested
datasets and experimental setup. In contrast, the SVM
model showed lower performance on several datasets,
particularly on JM1, where its F1-measure dropped to
0.597, suggesting potential limitations in handling class
imbalance and complex data distributions without optimal
parameter tuning.

The Random Forest classifier also demonstrated strong
performance, particularly on datasets such as CM1 and
MC1, with precision values of 0.952 and 1.000,
respectively. However, in datasets like JM1 and KC1,
RF's F1-measure was slightly lower than that of Stacking,
highlighting the importance of selecting classification
models based on the characteristics of individual
datasets.

Based on these findings, future research may explore
alternative or hybrid metaheuristic algorithms beyond
BHHO such as Whale Optimization Algorithm or Firefly
Algorithm—to potentially improve convergence and
feature selection quality. Expanding evaluations to
include larger and more diverse datasets, including
industrial systems or open-source repositories (e.g.,
GitHub, GitLab), would also support broader
generalization. Additionally, integrating deep learning
approaches like graph neural networks or transformer-
based models, and combining static code metrics with
process or textual features, may offer richer
representations. Finally, incorporating explainable AI
(XAI) techniques could enhance transparency and trust in
defect prediction models, supporting more informed
decision-making in software engineering practice.

REFERENCES

[1] J. Kethireddy, E. Aravind, and M. Vijayakamal,

“Software Defects Prediction using Machine

Learning Algorithms,” Nov. 2023.

[2] M. Canaparo, E. Ronchieri, and G. Bertaccini,

“Software defect prediction: A study on software

metrics using statistical and machine learning

methods,” Nov. 2022, p. 20. doi:

10.22323/1.415.0020.

[3] M. B. R. Pandit and N. Varma, “A Deep Introduction

to AI Based Software Defect Prediction (SDP) and

its Current Challenges,” in TENCON 2019 - 2019

IEEE Region 10 Conference (TENCON), 2019, pp.

284–290. doi: 10.1109/TENCON.2019.8929661.

[4] S. Omri and C. Sinz, “Deep Learning for Software

Defect Prediction: A Survey,” in Proceedings of the

IEEE/ACM 42nd International Conference on

Software Engineering Workshops, in ICSEW’20.

New York, NY, USA: Association for Computing

Machinery, 2020, pp. 209–214. doi:

10.1145/3387940.3391463.

[5] S. Haldar and L. Capretz, “Interpretable Software

Defect Prediction from Project Effort and Static

Code Metrics,” Computers, vol. 13, p. 52, Nov. 2024,

doi: 10.3390/computers13020052.

[6] R. Malhotra and K. Khan, “A Study on Software

Defect Prediction using Feature Extraction

Techniques,” in 2020 8th International Conference

on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions)

(ICRITO), 2020, pp. 1139–1144. doi:

10.1109/ICRITO48877.2020.9197999.

[7] H. Turabieh, M. Mafarja, and X. Li, “Iterated feature

selection algorithms with layered recurrent neural

network for software fault prediction,” Expert Syst

Appl, vol. 122, pp. 27–42, 2019, doi:

https://doi.org/10.1016/j.eswa.2018.12.033.

[8] P. Kumar, G. Gupta, and R. Tripathi, “Toward Design

of an Intelligent Cyber Attack Detection System

using Hybrid Feature Reduced Approach for IoT

Networks,” Arab J Sci Eng, vol. 46, Nov. 2021, doi:

10.1007/s13369-020-05181-3.

[9] I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher,

“Enhanced Binary Moth Flame Optimization as a

Feature Selection Algorithm to Predict Software

Fault Prediction,” IEEE Access, vol. 8, pp. 8041–

8055, 2020, doi: 10.1109/ACCESS.2020.2964321.

[10] M. Dong, Y. Wang, Y. Todo, and Y. Hua, “A Novel

Feature Selection Strategy Based on the Harris

Hawks Optimization Algorithm for the Diagnosis of

Cervical Cancer,” Electronics (Basel), vol. 13, no.

13, 2024, doi: 10.3390/electronics13132554.

[11] S. Song et al., “Dimension decided Harris hawks

optimization with Gaussian mutation: Balance

analysis and diversity patterns,” Knowl Based Syst,

vol. 215, p. 106425, 2021, doi:

https://doi.org/10.1016/j.knosys.2020.106425.

[12] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M.

Mafarja, and H. Chen, “Harris hawks optimization:

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

200

Algorithm and applications,” Future Generation

Computer Systems, vol. 97, pp. 849–872, 2019, doi:

https://doi.org/10.1016/j.future.2019.02.028.

[13] L. Peng, Z.-N. Cai, A. A. Heidari, L. Zhang, and H.

Chen, “Hierarchical Harris hawks optimizer for

feature selection (Journal of Advanced Research,

Impact factor 12.822),” J Adv Res, Nov. 2023, doi:

10.1016/j.jare.2023.01.014.

[14] U. G. Mohammad, S. Imtiaz, M. Shakya, A.

Almadhor, and F. Anwar, “An Optimized Feature

Selection Method Using Ensemble Classifiers in

Software Defect Prediction for Healthcare

Systems,” Wirel Commun Mob Comput, vol. 2022,

no. 1, p. 1028175, 2022, doi:

https://doi.org/10.1155/2022/1028175.

[15] W. Long et al., “Unified Spatial-Temporal Neighbor

Attention Network for Dynamic Traffic Prediction,”

IEEE Trans Veh Technol, vol. 72, no. 2, pp. 1515–

1529, 2023, doi: 10.1109/TVT.2022.3209242.

[16] Ma. J. Hemández-Molinos, Á. J. Sánchez-García,

and R. E. Barrientos-Martínez, “Classification

Algorithms for Software Defect Prediction: A

Systematic Literature Review,” in 2021 9th

International Conference in Software Engineering

Research and Innovation (CONISOFT), 2021, pp.

189–196. doi:

10.1109/CONISOFT52520.2021.00034.

[17] R. Aflaha, R. Herteno, M. R. Faisal, F. Abadi, and S.

Saputro, “Effect of SMOTE Variants on Software

Defect Prediction Classification Based on Boosting

Algorithm,” Jurnal Ilmiah Teknik Elektro Komputer

dan Informatika, vol. 10, pp. 201–216, Mar. 2024,

doi: 10.26555/jiteki.v10i2.28521.

[18] A. Balogun et al., “SMOTE-Based Homogeneous

Ensemble Methods for Software Defect Prediction,”

2020, pp. 615–631. doi: 10.1007/978-3-030-58817-

5_45.

[19] V. B. Singh, S. Misra, and M. Sharma, “Bug Severity

Assessment in Cross Project Context and

Identifying Training Candidates,” Journal of

Information & Knowledge Management, vol. 16, no.

01, p. 1750005, 2017, doi:

10.1142/S0219649217500058.

[20] A. N. Rao Moparthi and B. Dr. N. Geethanjali,

“Design and implementation of hybrid phase based

ensemble technique for defect discovery using

SDLC software metrics,” in 2016 2nd International

Conference on Advances in Electrical, Electronics,

Information, Communication and Bio-Informatics

(AEEICB), 2016, pp. 268–274. doi:

10.1109/AEEICB.2016.7538287.

[21] F. Matloob et al., “Software Defect Prediction Using

Ensemble Learning: A Systematic Literature

Review,” IEEE Access, vol. 9, pp. 98754–98771,

2021, doi: 10.1109/ACCESS.2021.3095559.

[22] N. Grattan, D. Alencar da Costa, and N. Stanger,

“The need for more informative defect prediction: A

systematic literature review,” Inf Softw Technol, vol.

171, p. 107456, 2024, doi:

https://doi.org/10.1016/j.infsof.2024.107456.

[23] A. Hardoni, “Integrasi SMOTE pada Naive Bayes

dan Logistic Regression Berbasis Particle Swarm

Optimization untuk Prediksi Cacat Perangkat

Lunak,” Jurnal Sistem dan Teknologi Informasi

(Justin), vol. 9, p. 144, Feb. 2021, doi:

10.26418/justin.v9i2.43173.

[24] K. Suryadi, R. Herteno, S. W. Saputro, M. R. Faisal,

and R. Nugroho, “Comparative Study of Various

Hyperparameter Tuning on Random Forest

Classification With SMOTE and Feature Selection

Using Genetic Algorithm in Software Defect

Prediction,” Journal of Electronics Electromedical

Engineering and Medical Informatics, vol. 6, pp.

137–147, Mar. 2024, doi:

10.35882/jeeemi.v6i2.375.

[25] Y. Zhao, Z. Huang, L. Gong, Y. Zhu, Q. Yu, and Y.

Gao, “Evaluating the Impact of Data Transformation

Techniques on the Performance and Interpretability

of Software Defect Prediction Models,” IET

Software, vol. 2023, no. 1, p. 6293074, 2023, doi:

https://doi.org/10.1049/2023/6293074.

[26] L. B. V de Amorim, G. D. C. Cavalcanti, and R. M.

O. Cruz, “The choice of scaling technique matters

for classification performance,” Appl Soft Comput,

vol. 133, p. 109924, 2023, doi:

https://doi.org/10.1016/j.asoc.2022.109924.

[27] S. Susan and A. Kumar, “The balancing trick:

Optimized sampling of imbalanced datasets—A

brief survey of the recent State of the Art,”

Engineering Reports, vol. 3, no. 4, p. e12298, 2021,

doi: https://doi.org/10.1002/eng2.12298.

[28] N. Pudjihartono, T. Fadason, A. Kempa-Liehr, and J.

O’Sullivan, “A Review of Feature Selection Methods

for Machine Learning-Based Disease Risk

Prediction,” Frontiers in Bioinformatics, vol. 2, p.

927312, Feb. 2022, doi: 10.3389/fbinf.2022.927312.

[29] Y. Feng, L. Feng, S. Liu, S. Kwong, and K. C. Tan,

“Towards multi-objective high-dimensional feature

selection via evolutionary multitasking,” Swarm Evol

Comput, vol. 89, p. 101618, 2024, doi:

https://doi.org/10.1016/j.swevo.2024.101618.

[30] J. Xie, X. Li, L. Gao, and L. Gui, “A hybrid genetic

tabu search algorithm for distributed flexible job

shop scheduling problems,” J Manuf Syst, vol. 71,

pp. 82–94, 2023, doi:

https://doi.org/10.1016/j.jmsy.2023.09.002.

[31] H. Alabool, D. Al- Arabiat, L. Abualigah, and A. A.

Heidari, “Harris hawks optimization: a

comprehensive review of recent variants and

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

201

applications,” Neural Comput Appl, vol. 33, Feb.

2021, doi: 10.1007/s00521-021-05720-5.

[32] M. H. Nadimi-Shahraki, H. Zamani, Z. Asghari

Varzaneh, and S. Mirjalili, “A Systematic Review of

the Whale Optimization Algorithm: Theoretical

Foundation, Improvements, and Hybridizations,”

Archives of Computational Methods in Engineering,

vol. 30, no. 7, pp. 4113–4159, 2023, doi:

10.1007/s11831-023-09928-7.

[33] M. Al Shinwan et al., “Dragonfly algorithm: a

comprehensive survey of its results, variants, and

applications,” Multimed Tools Appl, vol. 80, Apr.

2021, doi: 10.1007/s11042-020-10255-3.

[34] P. Qin, H. Hu, and Z. Yang, “The improved

grasshopper optimization algorithm and its

applications,” Sci Rep, vol. 11, p. 23733, Apr. 2021,

doi: 10.1038/s41598-021-03049-6.

[35] A. M. Akbar, R. Herteno, S. W. Saputro, M. R. Faisal,

and R. A. Nugroho, “Optimizing Software Defect

Prediction Models: Integrating Hybrid Grey Wolf and

Particle Swarm Optimization for Enhanced Feature

Selection with Popular Gradient Boosting

Algorithm,” Journal of Electronics, Electromedical

Engineering, and Medical Informatics, 2024,

[Online]. Available:

https://api.semanticscholar.org/CorpusID:26970178

5

[36] J. Jui, M. M. I. Molla, M. A. Ahmad, and I.

Hettiarachchi, “Recent Advances and Applications

of the Multi-verse Optimiser Algorithm: A Survey

from 2020 to 2024,” Archives of Computational

Methods in Engineering, Apr. 2025, doi:

10.1007/s11831-025-10277-w.

[37] D. Rawat and P. Singh, “An Effective Algorithm

using Moth Flame Optimization (MFO) for

Numerical Expression Solutions.,” International

Journal For Multidisciplinary Research, 2024,

[Online]. Available:

https://api.semanticscholar.org/CorpusID:26835760

8

[38] T. Thaher, A. A. Heidari, M. Mafarja, and J. Dong,

“Binary Harris Hawks Optimizer for High-

Dimensional, Low Sample Size Feature Selection,”

2020, pp. 251–272. doi: 10.1007/978-981-32-9990-

0_12.

[39] T. Thaher and N. Arman, “Efficient Multi-Swarm

Binary Harris Hawks Optimization as a Feature

Selection Approach for Software Fault Prediction,”

Feb. 2020. doi: 10.1109/ICICS49469.2020.239557.

[40] X. Xiaolong, C. Wen, and W. Xinheng, “RFC: A

feature selection algorithm for software defect

prediction,” Journal of Systems Engineering and

Electronics, vol. 32, no. 2, pp. 389–398, 2021, doi:

10.23919/JSEE.2021.000032.

[41] H. Ghinaya, R. Herteno, M. R. Faisal, A. Farmadi,

and F. Indriani, “Analysis of Important Features in

Software Defect Prediction Using Synthetic Minority

Oversampling Techniques (SMOTE), Recursive

Feature Elimination (RFE) and Random Forest,”

Journal of Electronics, Electromedical Engineering,

and Medical Informatics, vol. 6, no. 3, pp. 276–288,

May 2024, doi: 10.35882/jeeemi.v6i3.453.

[42] J. Magidi, L. Nhamo, S. Mpandeli, and T.

Mabhaudhi, “Application of the Random Forest

Classifier to Map Irrigated Areas Using Google

Earth Engine,” Remote Sens (Basel), vol. 13, no. 5,

2021, doi: 10.3390/rs13050876.

[43] A. Przybyś-Małaczek, I. Antoniuk, K. Szymanowski,

M. Kruk, and J. Kurek, “Application of Machine

Learning Algorithms for Tool Condition Monitoring in

Milling Chipboard Process,” Sensors, vol. 23, p.

5850, Apr. 2023, doi: 10.3390/s23135850.

[44] M. Azzeh, Y. Elsheikh, A. Nassif, and L. Angelis,

“Examining the Performance of Kernel Methods for

Software Defect Prediction Based on Support

Vector Machine,” Sci Comput Program, vol. 226, p.

102916, Feb. 2022, doi:

10.1016/j.scico.2022.102916.

[45] A. Alazba and H. Aljamaan, “Software Defect

Prediction Using Stacking Generalization of

Optimized Tree-Based Ensembles,” Applied

Sciences, vol. 12, no. 9, 2022, doi:

10.3390/app12094577.

[46] M. Altalhan, A. Algarni, and T. Monia, “Imbalanced

Data Problem in Machine Learning: A Review,” IEEE

Access, vol. PP, p. 1, Apr. 2025, doi:

10.1109/ACCESS.2025.3531662.

[47] M. Ali, T. Mazhar, A. Al-Rasheed, T. Shahzad, Y.

Yasin Ghadi, and M. Amir Khan, “Enhancing

software defect prediction: a framework with

improved feature selection and ensemble machine

learning,” PeerJ Comput Sci, vol. 10, p. e1860, Feb.

2024.

[48] A. O. Balogun et al., “Software Defect Prediction

Using Wrapper Feature Selection Based on

Dynamic Re-Ranking Strategy,” Symmetry (Basel),

vol. 13, no. 11, 2021, doi: 10.3390/sym13112166.

AUTHOR BIOGRAPHY

Achmad Fauzan Luthfi is a Computer
Science student at the Faculty of
Mathematics and Natural Sciences,
Universitas Lambung Mangkurat, where
he has been pursuing his studies since
2021. He has a strong interest in software

engineering and software defect prediction (SDP). In
2023, he participated in the Bangkit program (batch 2),
organized by Google Indonesia, specializing in Machine
Learning with TensorFlow. In mid-2024, he completed a

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

202

four-month internship, during which he was involved in an
Android application development project using Flutter. He
is currently exploring backend development, focusing on
JavaScript and its various supporting frameworks. He can
be contacted via email at:

2111016210004@mhs.ulm.ac.id.

Rudy Herteno received his bachelor’s
degree in Computer Science from
Lambung Mangkurat University in 2011.
After completing his studies, he worked
as a software developer for several years
to gain more experience in the field.
During this period, he developed various
software applications, particularly to

support the needs of local governments. In 2017, he
obtained a master's degree in Informatics from STMIK
Amikom University. Currently, he is a lecturer in the
Computer Science program at Lambung Mangkurat
University. His research interests include software
engineering, software defect prediction, and deep
learning, aiming to improve software quality, optimize
error detection in systems, and develop artificial
intelligence-based solutions.He can be contacted at

email: rudy.herteno@ulm.ac.id.

Friska Abadi finished his bachelor's
degree in Computer Science from
Lambung Mangkurat University in 2011.
Subsequently, in 2016, he obtained his
master's degree from the Department of
Informatics at STMIK Amikom,
Yogyakarta. Following that, he joined
Lambung Mangkurat University as a

lecturer in Computer Science. As a lecturer he teaches
programming. Apart from that, he also carries out
research and community service. Other activities as an
application developer, whether using a web or mobile
platform. Currently, he holds the position of head of the
software engineering laboratory. His current area of
research revolves around software engineering and also
interested in machine learning. He can be contacted at
email: friska.abadi@ulm.ac.id.

Radityo Adi Nugroho received his
bachelor's degree in Informatics from the
Islamic University of Indonesia and a
master's degree in Computer Science
from Gadjah Mada University. Currently,
he is an assistant professor in the
Department of Computer Science at
Lambung Mangkurat University. His

research interests include software defect prediction and
computer vision. He can be contacted at email:

radityo.adi@ulm.ac.id.

Muhammad Itqan Mazdadi, a lecturer in
the Department of Computer Science,
Lambung Mangkurat University. His
research interest is centered on Data
Science and Computer Networking.
Before becoming a lecturer, he
completed his undergraduate program in
the Computer Science Departmentat

Lambung Mangkurat University In 2013. He then
completed his master’s degree from Department of
Informatics at Islamic Indonesia University, Yogyakarta.
Currently, he serves as the Secretary of the Computer
Science Department at Lambung Mangkurat University.
He can be contacted at email: mazdadi@ulm.ac.id.

Professor Dr. Vijay Anant Athavale

is a distinguished academic and

professional with extensive

experience in computer science and

engineering. He holds a Ph.D. in

Computer Science from Barkatullah

University, Bhopal, and has served in

various prestigious roles, including Dean of Engineering

and Professor at Panipat Institute of Engineering &

Technology, Haryana and Department of Computer

Science and Engineering, Walchand Institute of

Technology, Solapur, Maharashtra, India. Dr. Athavale

has been a key figure in numerous institutions,

contributing significantly to their academic and

administrative advancements. He is a life member of

several professional bodies, such as the Computer

Society of India and ISTE. His research interests include

machine learning, IoT, and data management, with

numerous publications and patents to his name. Dr.

Athavale has also chaired and organized several

international conferences, reflecting his commitment to

advancing technology and education.

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/
mailto:2111016210004@mhs.ulm.ac.id
mailto:rudy.herteno@ulm.ac.id
mailto:friska.abadi@ulm.ac.id
mailto:radityo.adi@ulm.ac.id
mailto:mazdadi@ulm.ac.id

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 7, No. 2, pp. 188-202, May 2025

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
https://doi.org/10.35882/f2140043
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work is an
open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

203

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
https://doi.org/10.35882/f2140043
https://creativecommons.org/licenses/by-sa/4.0/

