Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics e-ISSN: 2656-8624

Homepage: https://ijeeemi.org/; Vol. 7, No. 3, pp. 514-525, August 2025
RESEARCH PAPER

An Empirical Study of Cross-Project and Within-

Project Performance in Software Defect Prediction
Models Using Tree-Based and Boosting
Classifiers

Raidra Zeniananto, Rudy Herteno'*, Radityo Adi Nugroho'”, Andi Farmadi'~, Setyo Wahyu Saputro

Department of Computer Science, Lambung Mangkurat University, Kalimantan Selatan, Indonesia

Paper History

Received Jan 02, 2025
Revised July 10, 2025
Accepted August 3, 2025
Published August 5, 2025

Abstract

Software Defect Prediction (SDP) is a vital process in modern software engineering aimed
at identifying faulty components in the early stages of development. In this study, we
conducted a comprehensive evaluation of two widely employed SDP approaches, Within-
Project Software Defect Prediction (WP-SDP) and Cross-Project Software Defect
Prediction (CP-SDP), using identical preprocessing steps to ensure an objective

K d
comparison. We utilized the NASA MDP dataset, where each project was split into 70% sszvv::r; ;efect.
training and 30% testing data, and applied three distinct resampling strategies no 5 qpp. ’
sampling, oversampling, and undersampling to address the challenge of class imbalance. CP_SDP_’

Five classification algorithms were examined, including Support Vector Machine (SVM),
Random Forest (RF), Gradient Boosting (GB), XGBoost (XGB), and LightGBM (LGBM).
Performance was measured primarily using Accuracy and Area Under the Curve (AUC)
metrics, resulting in 360 experimental outcomes. Our findings revealed that WP-SDP,
combined with oversampling and Random Forest, demonstrated superior predictive
capability on most projects, achieving an Accuracy of 89.92% and an AUC of 0.931 on
PC4. Nonetheless, CP-SDP excelled in certain small-scale projects (e.g., MW1),
underscoring its potential when local historical data is scarce but inter-project
characteristics remain sufficiently similar. This study’s results underscore the importance
of selecting a prediction scheme tailored to specific project attributes, class imbalance
levels, and available historical data. By establishing a standardized methodological
framework, our work contributes to a clearer understanding of the strengths and
limitations of WP-SDP and CP-SDP, paving the way for more effective defect detection
strategies and improved software quality.
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1. INTRODUCTION

As software complexity increases, so does the likelihood
of defects, adversely affecting quality and security [1].
Ensuring quality before release is therefore essential [2].
The presence of multiple faults in source code
necessitates repeated testing, driving up costs and

evolved with two main approaches, namely Within-Project
Software Defect Prediction (WP-SDP) and Cross-Project
Software Defect Prediction (CP-SDP). WP-SDP utilizes
historical defect data from the same project to build
predictive models, assuming that past defect patterns are
representative of future defects within the same project

resource demands [3]. Recognizing its importance,
Software Defect Prediction (SDP) plays a vital role in
preserving software quality by detecting defects early and
preventing more significant losses [4], [5]. Automated
SDP techniques have been developed that leverage
historical data and relevant metrics to detect potential
defects, thereby enhancing reliability and prioritizing
testing efforts [6], [7]. By utilizing previous versions of
source code and defect records, SDP automates the
identification process and reduces manual effort [8].
However, selecting effective predictive attributes remains
challenging [9], prompting the use of feature selection
methods to remove redundant or irrelevant features and
enhance classification performance [10].

In the face of rapid technological advancements and
increasing system complexity, approaches in SDP

[11]. This approach often yields high accuracy but may
struggle when there is insufficient labeled data [12]. On
the other hand, CP-SDP leverages defect data from
external projects to predict defects in a target project,
making it useful when project-specific defect data is
limited [13]. However, challenges such as differences in
data distribution and feature misalignment between
source and target projects can impact prediction
performance [14].

Problems in Software Defect Prediction (SDP) are
often faced with data imbalance and feature distribution
diversity between projects, which can significantly affect
the performance of predictive models [15]. Due to these
data disparities, evaluating WP-SDP and CP-SDP
approaches requires a special strategy to ensure
objective and reliable analysis. Therefore, applying
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resampling techniques is an important aspect of SDP
research, as it helps stabilize data variability and ensures
that each model is evaluated fairly [16].

Random Resampling is one of the commonly used
resampling techniques and has been proven effective in
various classification scenarios [17]. This technique
handles data imbalance through two main approaches.
First, oversampling increases the number of samples in
the minority class so that the algorithm can better
understand the patterns from the underrepresented data
[18]. This approach is effective in reducing model bias but
may increase the risk of overfitting due to the added
synthetic data [19]. Secondly, undersampling reduces the
number of samples in the majority class to create a more
balanced distribution [20]. While it can speed up the
training process and reduce storage requirements, it runs
the risk of omitting important information that can affect
model accuracy [21].

Once the dataset is balanced using resampling
techniques, the next step in Software Defect Prediction
(SDP) is to build a machine-learning model to perform
classification. Various methods can be used in this
process, including algorithms such as Support Vector
Machine, Random Forest, Gradient Boosting, XGBoost,
and LightGBM, each of which has advantages in handling
complex and diverse data. The selection of the right
model is an important factor in improving the accuracy of
defect prediction, thus enabling more effective
identification of potential software defects.

Support Vector Machine (SVM) is a machine learning
algorithm that is widely used in various classification tasks
in Software Defect Prediction (SDP). SVM works by
finding the optimal hyperplane that separates the data
classes by the largest margin, so that it can produce more
accurate decisions, especially on high-dimensional data
[22]. The main advantage of SVM lies in its ability to
handle data that is not linearly separable through the use
of kernel tricks [23], which allows the transformation of
data into a higher dimensional space to find a more
optimal separation. In the context of SDP, SVM has been
widely applied to identify possible defects in source code,
with its reliability in overcoming the problems of data
imbalance and feature complexity in software projects.

Besides SVM, another widely used algorithm in
classification is Random Forest (RF), which also has an
important role in Software Defect Prediction (SDP). RF is
an ensemble learning-based method consisting of several
decision trees that work simultaneously to improve
prediction accuracy [24]. By combining the results of
many decision trees, RF can reduce the risk of overfitting
and improve model generalization to new data [25].
Another advantage of RF is its ability to handle complex
data sets and non-linear features, making it an effective
choice for predicting software defects [26]. In SDP, RF is
often used because of its robustness to noise in the data
and its ability to identify the features that contribute most
to defect prediction, thus improving the reliability of
software defect detection systems.

Ensemble learning-based approaches are widely used
in classification, including Gradient Boosting and

XGBoost, which play an important role in Software Defect
Prediction (SDP). Gradient Boosting builds a model
incrementally with a series of decision trees that mutually
correct previous prediction errors, resulting in a more
accurate and outlier-resistant model [27]. Its advantage
lies in its ability to handle unstructured data as well as
non-linear relationships between features, making it an
effective solution in improving defect prediction
performance [28]. A further development of this method is
XGBoost (Extreme Gradient Boosting), which is designed
to improve efficiency and accuracy through decision tree-
based optimization and regularization to reduce overfitting
[29]. XGBoost excels in handling large datasets and
capturing complex relationships between features [30],
making it a reliable choice in various classification tasks,
including SDP.

As a more efficient alternative to XGBoost, LightGBM
(Light Gradient Boosting Machine) was developed to
improve speed and scalability in the machine learning
process. The algorithm is designed with a leaf-wise
growth approach, which allows the processing of large
amounts of data with less computation time than
traditional boosting methods [31]. The main advantage of
LightGBM is the extraordinary performance of LightGBM
in terms of its precision, model stability, and computing
efficiency [32].

Once the classification model is applied in Software
Defect Prediction (SDP), the next step is to evaluate its
performance using appropriate metrics. Two commonly
used metrics in assessing prediction quality are Accuracy
and Area Under the Curve (AUC-ROC) [33]. Accuracy
measures the proportion of correct predictions to the
overall data [34], making it a simple but less informative
metric if the dataset suffers from class imbalance.
Meanwhile, AUC-ROC provides a more comprehensive
picture by assessing the model's ability to distinguish
between defect and non-defect classes at various
thresholds [35], making it more relevant for scenarios with
uneven data distribution. In the context of SDP, the
combination of these two metrics is often used to
understand the extent to which the model can identify
software defects with accuracy and balance.

While metrics such as Accuracy and AUC-ROC
provide an overview of model performance in Software
Defect Prediction (SDP), the main challenge in this
research lies in how the comparison between Within-
Project Software Defect Prediction (WP-SDP) and Cross-
Project Software Defect Prediction (CP-SDP) is done
fairly. Many previous studies have compared these two
approaches without ensuring that the classification
methods and resampling techniques used are in an apple-
to-apple condition, so the results obtained cannot always
be used as a clear reference. As a result, researchers
often face difficulties in determining the most effective
strategy to improve defect prediction accuracy, both in the
context of the same project and across projects. This
research gap suggests the need for a more systematic
evaluation of the combination of classification methods
and resampling techniques to provide more
comprehensive guidance in the selection of the optimal
approach for SDP.
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Due to the need for systematic evaluation in Software
Defect Prediction, there are still fundamental weaknesses
in the comparison between WP-SDP and CP-SDP that
exist in the current literature. The study by Bhat and
Farooq (2023) used varied pre-processing, evaluation
metrics, and algorithms making it difficult to obtain a
consistent comparison between the two methods [36],
while the study by Zhu et al. (2020) relied too much on
specific algorithms that could lead to bias [37], and the
study by Li et al. (2025) has not deeply examined the
influence of different dataset distributions and
preprocessing techniques on prediction results [38].
Therefore, there is a research gap that needs to be filled
through a comprehensive study that conducts an apple-
to-apple comparison between WP-SDP and CP-SDP with
consistent control of experimental variables to obtain a
more fair and objective evaluation.

The method proposed in this study is designed to
ensure a fair comparison between within-project and
cross-project based software defect prediction. The
technique utilizes the NASA MDP data set processed in a
computational framework using Google Colab (runtime:
Python 3.10, CPU: Intel Xeon 2.30 GHz, RAM: 12 GB,
GPU: NVIDIA Tesla T4) and Python programming
language, as shown in FIGURE 1 which presents the
research flowchart. For the within-project approach (WP-
SDP), data is taken from one project and then divided into
70% training data and 30% test data. In the cross-project
approach (CP-SDP), training data is obtained from all
projects except the project used in WP-SDP, with the
same 30% of test data used as evaluation points.
Furthermore, both approaches were applied to three
types of sampling techniques sampling, oversampling,
and undersampling which were then evaluated using five
classification algorithms, namely Support Vector Machine,
Random Forest, XGBoost, LightGBM, and Gradient
Boosting, to obtain a comprehensive assessment of the
effectiveness of software defect prediction. Model
performance evaluation uses the AUC and the Accuracy
metric to measure the model's ability to distinguish
between defect and non-defect classes. This research
framework is designed to provide a fair comparison
between software defect prediction based on within-
project and cross project. This study makes four main
contributions: (1) objective comparison of WP-SDP and
CP-SDP with identical pre-processing and test data; (2)
holistic resampling impact analysis for both schemes; (3)
performance evaluation of modern algorithms such as
Support Vector Machine, Random Forest, XGBoost,
LightGBM, and Gradient Boosting in various scenarios;
and (4) practical data-driven guidance for SDP scheme
selection according to historical data availability, project
size, and degree of class imbalance.

2. Materials and Method

In this study, five machine learning models-Support Vector
Machine, Random Forest, XGBoost, Gradient Boosting,
and LightGBM-were used to evaluate the performance of
three resampling techniques: no sampling, oversampling,
and undersampling. Figure 1 shows the research
workflow.
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Fig. 1. Research Flowchart

A. Dataset

The NASA MDP (Metric Data Program) dataset is a
collection of data provided by NASA and is widely used in
software engineering research, particularly in the field of
software defect prediction. This dataset contains software
metrics collected from various NASA projects that shows
in Table 1, including code size, complexity, and the
number of defects found in the source code. The data is
obtained through a data collection process that involves
extracting metrics from source code and recording
information  about software defects based on
development history. With the NASA MDP dataset,
researchers can compare various software defect
prediction methods, such as WPDP and CPDP, under
apple-to-apple conditions to evaluate the accuracy of the
models used. The NASA MDP dataset is available

through the following link:
https://github.com/klainfo/NASADefectDataset [39].
Table 1. Nasa MDP Dataset
Proiect Programming  Number of Defect
) Language Instance Ratio (%)

CM1 C 327 12.8

JM1 Java 7720 20.8

KC1 Java 1162 253
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KC3 Java 194 18.6
MC1 C and C++ 1988 23
MC2 Cc 125 35.2
MWA1 C 253 10.7
PC1 C 705 8.7
PC2 C 745 2.1

PC3 C 1077 12.4
PC4 C 1287 13.8
PC5 C++ 1711 27.5

B. Data Processing and Partitioning

When working with a biased dataset, it is important to fix
imbalances in the training data. One effective method is
resampling, which balances the number of instances from
majority and minority classes. Additionally, we perform
feature alignment in preprocessing to ensure that the
same set of attributes is used across all projects before
sampling, creating a consistent input space for both WP-
SDP and CP-SDP. Previous studies have shown that this
approach helps create a more representative dataset for
training [40].

Data sampling is generally divided into
two, oversampling, and undersampling [41]. We chose
random resampling specifically for its simplicity and
reproducibility: it allows us to adjust class distributions
without introducing additional heuristics, and by fixing a
seed value we ensure identical behavior across runs.
Furthermore, no class weighting or hyperparameter
tuning was applied, so that all observed performance
differences can be attributed solely to the sampling
scheme and classifier choice.

Random resampling is a basic method provided by
Python libraries such as imbalanced-learn to perform data
balancing by randomizing and selecting random samples
from a dataset. This method serves as the foundation for
applying both oversampling and undersampling
techniques. By using the functions provided by the library,
the class distribution in the dataset can be adjusted so
that the prediction model can be trained with balanced
data.

1) Random oversampling is a technique used to
enhance the representation of the minority class by
duplicating a selected number of its samples,
sometimes with slight modifications, thereby
addressing class imbalance [42]. This method
calculates the total samples after oversampling
as Not+ kxN;, where N, represents the number of
majority class samples, N; the number of minority
samples, and k is typically set to 1 or 2. Additionally,
by randomly selecting minority class examples with
replacement, the technique effectively increases the
dataset size and contributes to a more balanced
training process [43]. However, the duplicated data
from the minority class can have the same value
(redundant), increasing the chance of overfitting [44].

2)Random undersampling (RUS) is a non-heuristic
technique used to balance imbalanced datasets by
reducing the number of samples in the majority class
rather than replicating minority class instances [45].
Instead of adding more data to the minority class,
this method randomly removes samples from the
majority class to achieve a balanced distribution,
thereby lowering the dataset's size. While this
reduction can significantly decrease training time
and computational cost, it runs the risk of eliminating
critical data points that might be valuable for
accurate model training [46]. Consequently, the
efficiency gains from RUS must be carefully weighed
against the potential degradation in classification
performance that may result from losing important
information.

A common approach for validating models is to split the
data into two parts: one for training and one for testing. In
this approach, the dataset is divided such that the training
subset is used to build the model, while the testing subset
is reserved for evaluating its performance. By separating
the data in this way, an unbiased assessment of the
model's predictive capabilities is ensured, and concerns
about overfitting on the training data are minimized [47].
In this study, we used a 70:30 split where 70 is used for
model training data and 30 is used as test data. This ratio
provides a balance between providing enough samples
for the model to learn complex patterns and retaining
unseen data to reliably measure its generalization
performance; it is a generally accepted convention that
offers stable estimates without overly restricting training
or evaluation.

C. Classification Algorithms

Classification algorithms are an important component in
machine learning, especially in software defect prediction.
Various algorithms are developed to classify data into
defect and non-defect categories based on features. In
this research, we wuse five popular classification
algorithms, namely Support Vector Machine (SVM),
Random Forest (RF), XGBoost, Gradient Boosting, and
LightGBM. Each algorithm has its advantages in
processing data, overcoming class imbalance, and
achieving high prediction accuracy.

1) Support Vector Machine (SVM)

Support Vector Machine (SVM) is an effective
supervised learning model for binary classification,
particularly suitable for datasets with limited sample
sizes [48]. In Software Defect Prediction (SDP)
research, SVM is employed to predict software defect
class labels by constructing an optimal hyperplane that
maximizes the separation margin between instances of
the two classes (Figure 2). This hyperplane, visualized
in a two-dimensional feature space, is defined by the
maximum distance to the nearest data points (support
vectors) from both classes, thereby enhancing
prediction accuracy [49].
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Fig. 2. The implementation of SVM using an
optimal hyperplane and maximum margin for
data classification.

The strength of SVM lies in its flexibility to process both
linear and nonlinear data through kernel functions such as
Radial Basis Function (RBF) or polynomials, unlike
association rule methods that are confined to linear data
[50]. The selection of kernel type, size, and parameters
like gamma significantly influences the smoothness of
class separation and prevents overfitting [51]. This
combination of high computational efficiency and
adaptability positions SVM as an efficient solution for
SDP, especially in detecting hidden defect patterns within
program code.

2) Random Forest (RF)

Random Forest (RF) is an ensemble algorithm designed
to enhance prediction accuracy and stability by
aggregating outputs from multiple decision trees [52].
Each tree is trained on randomly selected subsets of data
and features, which mitigates overfitting risks while
ensuring robustness in handling datasets with complex,
high-dimensional features [53]. The final prediction is
determined through majority voting, where the most
frequent class label across all trees is selected [54]. This
hierarchical approach recursively partitions data into
subgroups based on splitting criteria until termination
conditions are met, with terminal segments (leaf nodes)
representing definitive classifications.

Xz 2 dp

x1{ad K1EEI-|

Xa < 8y

Fig. 3. A graphical
decision tree

representation of the

The input space is recursively divided using axis-aligned
boundaries, where splits occur along coordinates parallel
to feature axes. For instance, an initial partition is
executed at the threshold x, = a,, followed by subsequent
subdivisions: the left subspace is split at x; = a,, while the

right subspace undergoes splits at x; = a; and x, = as.
This hierarchical division generates distinct regions, as
systematically illustrated in prior studies (Figure 3) [55].

3) XGBoost

XGBoost is a powerful ensemble learning method based
on gradient boosting, designed for scalability and high
performance on complex datasets [56]. It builds an
additive model by sequentially minimizing a loss function,
which combines the error term and a regularization
component to control model complexity. This overall
objective can be formulated as in Eq. (1) and Eq. (2):

Legp = ) LOWFGD) + ) 0 ()
i=1 m=1

(1)
where the regularization term is defined as
1
2(h) =yT + EIIWII2
2)
In addition to its elegant formulation, XGBoost

incorporates advanced techniques such as random
subsampling and column sampling to reduce overfitting
and enhance training speed [57]. Each new decision tree
is added to the ensemble with the specific goal of
correcting the errors made by the previous trees, resulting
in an iterative refinement process that boosts overall
performance. These methodological choices make
XGBoost not only efficient but also highly effective in
handling large-scale and complex machine learning
problems [58].

4) Gradient boosting

Gradient boosting is a powerful ensemble learning
method that iteratively combines multiple weak learners
into a strong predictive model [59]. Initially introduced by
Friedman in 2001, this technique is widely applied in both
regression and classification tasks, assigning specific
weights to data points to guide the learning process. The
method builds an additive model where each successive
learner focuses on the residuals the errors made by the
combined predictions of its predecessors. When decision
trees serve as the base classifiers, the overall model can
be expressed by the summation of regression trees as
follows in Eq. (3):

Fy(xe) = Zf ()
(3)

where each fi(xt) represents an individual regression tree.

In every iteration, gradient boosting fits a new learner to
the residual errors derived from the previous iterations,
utilizing gradient-based optimization instead of relying
solely on misclassification weights like those in AdaBoost
[60]. This process, while effective in improving accuracy,
requires careful regularization such as applying shrinkage
(reducing the gradient descent step size) and restricting
the complexity of the decision trees (for example, by
limiting their depth) to prevent overfitting [61]. Moreover,
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incorporating randomization techniques, such as random
sub sampling without replacement, further enhances the
model's generalization capabilities by introducing
variability during training. These combined strategies
enable gradient boosting to deliver highly accurate
models even in complex and noisy data environments.

5) LightGBM

LightGBM is an innovative gradient boosting framework
that leverages decision tree-based learning to achieve
both speed and scalability [62]. Developed to efficiently
handle large-scale and complex datasets, it incorporates
advanced techniques such as gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB) to
reduce the volume of data and the number of features
without sacrificing essential information. Moreover, it
employs a histogram-based learning method combined
with a leaf-wise tree growth strategy under a depth limit,
which further enhances training speed and model
accuracy [63].

In addition to its robust architectural design, LightGBM
is widely recognized for its high-performance computing
capabilities in distributed environments [64]. It supports
GPU acceleration and parallel learning, which
significantly lowers memory consumption and speeds up
the training process across various machine learning
tasks such as regression, ranking, and classification.
Furthermore, by intensifying the focus on misclassified
instances during successive iterations, LightGBM refines
weak learners into a strong ensemble model that has
been shown to outperform many traditional boosting
algorithms. A unique feature that distinguishes the
LightGBM algorithm from other gradient boosting tree
methods is its splitting tree, as depicted in the Figure 4.

® . .
6 omm 6 O & O ..
¢ o O o

¢ o
Fig. 4. Leaf-wise tree growth in LightGBM

The five classifiers SVM, Random Forest, XGBoost,
Gradient Boosting, and LightGBM were chosen for their
complementary strengths in addressing key challenges in
defect prediction. SVM handles high-dimensional data
and nonlinear patterns via kernels, while Random Forest
reduces overfitting and excels with imbalanced data.
XGBoost and Gradient Boosting optimize complex
decision boundaries through sequential error correction,
ideal for generalization. LightGBM prioritizes efficiency
and scalability for large datasets. Together, they enable a
balanced comparison of linear, tree-based, and gradient-
boosted approaches across WP-SDP and CP-SDP
scenarios.

D. Dataset
Performance metrics offer quantifiable measures to
evaluate how well software defect prediction models

perform in classification tasks. To achieve an objective
assessment, it is advisable to use a combination of widely
accepted metrics, such as accuracy, rather than relying
on a single indicator. Accuracy is one of the most
commonly understood evaluation metrics, indicating the
ratio of correctly predicted instances to the overall number
of instances in the dataset [65]. The formula used is in Eq.
(4).
TP+ TN

TP+ FN+FP+TN

Accuracy =

4)

Among these metrics, AUC (Area Under the Curve)
stands out as a robust measure of a model's ability to
distinguish between defect and non-defect classes
independent of any threshold. AUC reflects the probability
that a defective module will be scored higher than a non-
defective one, providing a nuanced view of the model's
classification performance even in the presence of
imbalanced or noisy datasets. Recent research [66] has
demonstrated that AUC is a reliable indicator in evaluating
the effectiveness of software defect prediction models,
reinforcing its role in ensuring a comprehensive and
objective evaluation. The formula used is shown in Eq.

®).

(TPT:I—PFN) + (TNT-I]-V FP)

AUC =
2

®)
3. Results
This study evaluates the performance of five classification
algorithms Random Forest (RF), Support Vector Machine
(SVM), XGBoost (XGB), Gradient Boosting (GB), and
LightGBM (LGBM) on two software defect prediction
(SDP) schemes: Within Project (WP-SDP) and Cross
Project (CP-SDP). To address the class imbalance, three
resampling strategies (no sampling, undersampling, and
oversampling) are applied. The dataset is divided into a
training-testing ratio of 70:30 to ensure a robust
evaluation of generalization ability. Performance metrics,
including Accuracy and AUC, are measured to compare
the effectiveness of each configuration. Notably, the study
produced up to 360 distinct sets of AUC and accuracy
data, reflecting a variety of outcomes across different
experimental settings.

Experiments on 12 NASA MDP projects show
performance variations between Cross-Project Software
Defect Prediction (CP-SDP) and Within-Project Software
Defect Prediction (WP-SDP) schemes as shown in Table
2. Overall, WP-SDP dominated by excelling in 8 out of 12
projects, while CP-SDP showed effectiveness in 4
projects, especially in small-sized projects such as MW1
and PC1. The combination of resampling and tree-based
classification techniques (such as Random Forest)
proved to be the most consistent in delivering high
performance.

The absolute best configuration was achieved by WP-
SDP on project PC4 with oversampling and Random
Forest classification, resulting in an Accuracy of 89.92%
and an AUC of 0.931. The scheme also excelled on
projects PC2 (AUC 0.917) and MC1 (AUC 0.908),
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demonstrating its ability to handle class imbalance when
project historical data is sufficient. On the other hand,
CPDP recorded the highest result in MW1 (AUC 0.929
with no sampling and Random Forest), indicating that
cross-project prediction can be competitive if the
characteristics of the source and target projects are
homogeneous.

Table 2. Comparison of the best performance
between the WP-SDP and CP-SDP methods per class
on the NASA MDP dataset highlighting the
performance advantages of each technique in
handling each class of data.

SDP + oversampling + Gradient Boosting), presumably
due to the complexity of the code and the poorly
represented feature distribution in the training data. On
the other hand, KC1 and KC3 (AUC 0.719 and 0.762)
show that the combination of SDP/CPDP with
undersampling or oversampling can moderately
overcome class imbalance.

We present paired t-test results for Random Forest on
just two projects PC4 under WP-SDP (Table 3) and MW1
under CP-SDP (Table 4) selected because they achieved
the highest performance in their respective schemes and
thus serve as clear, representative examples. In each
project, the comparison between no sampling and
oversampling shows no significant difference in Accuracy

Proje Sampli Classifi ACC or AUC, confirming that duplicating minority instances
o Method ng or (%) AUC  does not materially alter RF’s performance when ample
data is available (PC4) or when source and target
CM1 CP-SDP No RF 8485 (.801 datasets share strong homogeneity (MW1). By contrast,
both- no sampling versus undersampling and
JM1  WP-SDP Over GB 70.11 0.691 oversampling versus undersampling exhibit significant
declines in both metrics (p < 0.05), underscoring that
KC1 WP-SDP  Under GB 67.89 0.719 removing majority-class examples impairs the model’s
ability to capture defect patterns. These results reinforce
KC3 CP-SDP  Over LGBM  76.27 0.762 our recommendation to favor oversampling over
undersampling for Random Forest in high-data scenarios
MC1  WP-SDP  Under GB 7822 0908 and to rely on unsampled CP-SDP when project
characteristics are closely aligned, demonstrating that our
MC2 WP-SDP  Under GB 6842 0.833  findings remain consistent across multiple runs.
Mw1 - CP-SDP No RF 89.47  0.929 Table 3. Paired t-test results of project PC4
PC1 CP-SDP Over LGBM 80.19 0.862  representing WP-SDP
PC2 WP-SDP Under RF 78.13 0.917 CorTI tstat p Sig. tstat p- Sig.
- paris (ACC) value ACC  (AUQ) value AU
PC3 WP-SDP Under LGBM 75 0.795 on (ACC) (AUC) C
PC4 WP-SDP  Over RF 89.92  0.931 N
°V® 124 0249 No 015 0.887 No
PC5 WP-SDP  Over RF 7432 0.754 Over
No vs
. . o . 2.84 0.02 Yes 3.21 0.012 Yes
The oversampling technique significantly improves Under
SDP performance, especially on large projects such as
PC4 (+O.15_ AUQ compared to no sampling).. Howevgr, Over vs 355 0.006 Yes 387 0004 Yes
undersampling is more effective for projects with Under
moderate class imbalance such as MC1 (AUC 0.908) and
PC2 (AUC 0.917). Meanwhile, CPDP achieved optimal  Tapje 4. Paired t-test results of project MWA1
performance  without resampling techniques (no  representing CP-SDP
sampling) in MW1 and CM1, suggesting that data
reduction or augmentation may remove important p- p- Sig.
patterns across projects. Comp t-stat | Sig.  t-stat | AU
Random Forest was the most reliable algorithm, arison (ACC) valie  acc (AUC) vaiie
topping the rankings in 6 projects (e.g. PC4, MW1, CM1) (ACC) (AuQ) ¢
with an average AUC of 0.893. Boosting-based classifiers
such as LightGBM and Gradient Boosting showed mixed Novs 124 0249 No -0.15 0.887 No
results: LightGBM excelled in PC1 (0.862 AUC with Over ' ' ' '
CPDP), while Gradient Boosting had the lowest
performance in JM1 (0.691 AUC) due to its sensitivity to No vs
data noise. Under 284 0.02 Yes 3.21 0.012 Yes

Project JM1 recorded the worst result (AUC 0.691 with
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Over
VS 3.55 0.006 Yes
Under

3.87 0.004 Yes

4. Discussion

The results show that the performance of software defect
prediction is highly dependent on the selection of
schemes, resampling strategies, and classification
algorithms. WP-SDP tends to excel in most cases,
especially when oversampling is combined with an
ensemble algorithm such as Random Forest, resulting in
an AUC of 0.931 on one major project. On the other hand,
CP-SDP also showed superiority on certain projects,
especially on a small project such as MW1 which obtained
an AUC of 0.929 without the application of resampling.
This finding confirms that local data patterns are a key
factor affecting model accuracy and allows WP-SDP to
show consistent results on projects with adequate data
representation. In general, WP-SDP benefits from richer,
project-specific histories its models learn nuanced defect
patterns when ample examples are available whereas
CP-SDP shines on smaller datasets by leveraging
broader experience from other projects to compensate for
limited local observations. Overall, an in-depth analysis of
this experiment revealed that the method configuration
and dataset characteristics must be adjusted to achieve
optimal prediction results.

In the study by N. A. Bhat and S. U. Farooq (2023), they
found that local data has an important role in maintaining
defect patterns, which aligns with our WP-SDP
superiority. Meanwhile, in the study by Zhu et al. (2020),
the transfer learning method with feature weighting
improves the effectiveness of CP-SDP on projects with
homogeneous characteristics, which is in line with the
results that show CP-SDP excels in MW1. In addition,
research by T. Li, Z. Wang, and P. Shi (2025) proposed
model fusion to optimize prediction, which supports our
findings regarding the reliability of the Random Forest
algorithm in reducing noise and handling non-linear
features. A comparison of these three studies shows that
although the approaches used are different, they all
emphasize the importance of tailoring the method to the
characteristics of the available data. This indicates that
collaboration between local techniques and across
projects can open up opportunities to combine the
strengths of each approach in creating more adaptive
defect prediction systems.

This research has several limitations that need to be
considered for the interpretation of the results and further
development of the method. First, the number of projects
used is limited to the NASA MDP dataset, so the results
may not be generalizable to all types of software projects.
To address this, future work should include diverse
repositories such as GitHub or JIRA and assess
transferability across domains. Second, the
hyperparameter configuration for the classification
algorithm has not been optimized in depth, which could
potentially affect performance, especially in models such
as Gradient Boosting that show sensitivity to noise. A

systematic tuning campaign or automated search could
mitigate this gap. Third, the application of oversampling
and undersampling techniques in CP-SDP schemes
sometimes results in bias, as not all projects require data
manipulation to achieve prediction stability. Adaptive or
hybrid sampling approaches that respond to each
project's imbalance level may overcome this issue.
Fourth, the comparison between WP-SDP and CP-SDP
has not been accompanied by an in-depth quantitative
analysis of the similarity of characteristics between
projects so that adjustments to the method can be made
more systematically. Incorporating metrics of project
similarity or domain distance could guide better method
selection.

The research has broad implications for practitioners
and researchers in the field of software engineering. The
results show that the selection of prediction methods must
carefully consider local data characteristics and uniformity
between projects so that WP-SDP can be prioritized on
projects with data that represents the actual conditions of
development. For developers, the use of oversampling
and ensemble algorithms such as Random Forest is an
effective solution to overcome the problem of class
imbalance, especially in large-scale projects. The findings
also suggest that different resampling strategies can be
applied based on the level of data imbalance, such as
undersampling for cases with moderate imbalance.
Furthermore, the findings from this study open up
opportunities for the integration of transfer learning and
model averaging approaches to improve prediction
efficiency and accuracy in more diverse industrial
applications. In a real-world setting, teams with extensive
historical logs could default to WP-SDP, while those
launching new or smaller codebases might adopt CP-SDP
to bootstrap their prediction pipelines; our framework thus
serves as a practical guide for method selection in live
projects.

5. Conclusion

This study aims to compare the effectiveness of Cross-
Project (CP-SDP) and Within-Project (WP-SDP) defect
prediction schemes using the NASA MDP dataset,
considering resampling techniques (undersampling,
oversampling, no sampling) and the performance of five
classifiers. Results show that WP-SDP excels in 8 out of
12 projects, with the highest performance in project PC4
(AUC 0.931, Accuracy 89.92%) using oversampling and
Random Forest. Meanwhile, CP-SDP was effective in
homogeneous projects such as MW1 (AUC 0.929,
Accuracy 89.47%) with no sampling and Random Forest.
The oversampling technique improves the performance of
WP-SDP by 15%, while undersampling is optimal for
projects with moderate class imbalance. Random Forest
was the best classifier (excelling in 6 projects), while
Gradient Boosting was susceptible to data noise (lowest
AUC 0.691 in JM1).

Further research is recommended to test the
generalizability of these findings to non-NASA datasets
(e.g. GitHub/JIRA) and integrate cost-sensitive metrics to
reflect the risk of false negatives in the real world. Building
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on our observation that CP-SDP often struggles with
distribution shifts while WP-SDP falters when data is
scarce, future work should explore transfer learning
strategies that can adapt models trained on mature
projects to emerging ones, effectively bridging the gap
between inter and intra project data. Likewise, hybrid
sampling techniques which intelligently combine
oversampling of minority cases with targeted
undersampling of noisy majority instances could mitigate
class imbalance more robustly than single-method
schemes, as our results showed oversampling increased
recall but sometimes inflated false positives, and
undersampling reduced training cost at the expense of
lost information. Incorporating model interpretability
analyses such as SHAP values will help reveal which
features drive predictions across both WP and CP
settings, guiding more transparent defect prediction
pipelines. The findings provide practical guidance for
developers in selecting defect prediction schemes
according to historical data availability, project
characteristics, and algorithm complexity, so that software
quality optimization can be performed more efficiently.
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