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Abstract 

Software Defect Prediction (SDP) is a vital process in modern software engineering aimed 
at identifying faulty components in the early stages of development. In this study, we 
conducted a comprehensive evaluation of two widely employed SDP approaches, Within-
Project Software Defect Prediction (WP-SDP) and Cross-Project Software Defect 
Prediction (CP-SDP), using identical preprocessing steps to ensure an objective 
comparison. We utilized the NASA MDP dataset, where each project was split into 70% 
training and 30% testing data, and applied three distinct resampling strategies no 
sampling, oversampling, and undersampling to address the challenge of class imbalance. 
Five classification algorithms were examined, including Support Vector Machine (SVM), 
Random Forest (RF), Gradient Boosting (GB), XGBoost (XGB), and LightGBM (LGBM). 
Performance was measured primarily using Accuracy and Area Under the Curve (AUC) 
metrics, resulting in 360 experimental outcomes. Our findings revealed that WP-SDP, 
combined with oversampling and Random Forest, demonstrated superior predictive 
capability on most projects, achieving an Accuracy of 89.92% and an AUC of 0.931 on 
PC4. Nonetheless, CP-SDP excelled in certain small-scale projects (e.g., MW1), 
underscoring its potential when local historical data is scarce but inter-project 
characteristics remain sufficiently similar. This study’s results underscore the importance 
of selecting a prediction scheme tailored to specific project attributes, class imbalance 
levels, and available historical data. By establishing a standardized methodological 
framework, our work contributes to a clearer understanding of the strengths and 
limitations of WP-SDP and CP-SDP, paving the way for more effective defect detection 
strategies and improved software quality. 
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1. INTRODUCTION 

As software complexity increases, so does the likelihood 
of defects, adversely affecting quality and security [1]. 
Ensuring quality before release is therefore essential [2]. 
The presence of multiple faults in source code 
necessitates repeated testing, driving up costs and 
resource demands [3]. Recognizing its importance, 
Software Defect Prediction (SDP) plays a vital role in 
preserving software quality by detecting defects early and 
preventing more significant losses [4], [5]. Automated 
SDP techniques have been developed that leverage 
historical data and relevant metrics to detect potential 
defects, thereby enhancing reliability and prioritizing 
testing efforts [6], [7]. By utilizing previous versions of 
source code and defect records, SDP automates the 
identification process and reduces manual effort [8]. 
However, selecting effective predictive attributes remains 
challenging [9], prompting the use of feature selection 
methods to remove redundant or irrelevant features and 
enhance classification performance [10].  

In the face of rapid technological advancements and 
increasing system complexity, approaches in SDP 

evolved with two main approaches, namely Within-Project 
Software Defect Prediction (WP-SDP) and Cross-Project 
Software Defect Prediction (CP-SDP). WP-SDP utilizes 
historical defect data from the same project to build 
predictive models, assuming that past defect patterns are 
representative of future defects within the same project 
[11]. This approach often yields high accuracy but may 
struggle when there is insufficient labeled data [12]. On 
the other hand, CP-SDP leverages defect  data from 
external projects to predict defects in a target project, 
making it useful when project-specific defect data is 
limited [13]. However, challenges such as differences in 
data distribution and feature misalignment between 
source and target projects can impact prediction 
performance [14]. 

Problems in Software Defect Prediction (SDP) are 
often faced with data imbalance and feature distribution 
diversity between projects, which can significantly affect 
the performance of predictive models [15]. Due to these 
data disparities, evaluating WP-SDP and CP-SDP 
approaches requires a special strategy to ensure 
objective and reliable analysis. Therefore, applying 
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resampling techniques is an important aspect of SDP 
research, as it helps stabilize data variability and ensures 
that each model is evaluated fairly [16]. 

Random Resampling is one of the commonly used 
resampling techniques and has been proven effective in 
various classification scenarios [17]. This technique 
handles data imbalance through two main approaches. 
First, oversampling increases the number of samples in 
the minority class so that the algorithm can better 
understand the patterns from the underrepresented data 
[18]. This approach is effective in reducing model bias but 
may increase the risk of overfitting due to the added 
synthetic data [19]. Secondly, undersampling reduces the 
number of samples in the majority class to create a more 
balanced distribution [20]. While it can speed up the 
training process and reduce storage requirements, it runs 
the risk of omitting important information that can affect 
model accuracy [21]. 

Once the dataset is balanced using resampling 
techniques, the next step in Software Defect Prediction 
(SDP) is to build a machine-learning model to perform 
classification. Various methods can be used in this 
process, including algorithms such as Support Vector 
Machine, Random Forest, Gradient Boosting, XGBoost, 
and LightGBM, each of which has advantages in handling 
complex and diverse data. The selection of the right 
model is an important factor in improving the accuracy of 
defect prediction, thus enabling more effective 
identification of potential software defects. 

Support Vector Machine (SVM) is a machine learning 
algorithm that is widely used in various classification tasks 
in Software Defect Prediction (SDP). SVM works by 
finding the optimal hyperplane that separates the data 
classes by the largest margin, so that it can produce more 
accurate decisions, especially on high-dimensional data 
[22]. The main advantage of SVM lies in its ability to 
handle data that is not linearly separable through the use 
of kernel tricks [23], which allows the transformation of 
data into a higher dimensional space to find a more 
optimal separation. In the context of SDP, SVM has been 
widely applied to identify possible defects in source code, 
with its reliability in overcoming the problems of data 
imbalance and feature complexity in software projects. 

Besides SVM, another widely used algorithm in 
classification is Random Forest (RF), which also has an 
important role in Software Defect Prediction (SDP). RF is 
an ensemble learning-based method consisting of several 
decision trees that work simultaneously to improve 
prediction accuracy [24]. By combining the results of 
many decision trees, RF can reduce the risk of overfitting 
and improve model generalization to new data [25]. 
Another advantage of RF is its ability to handle complex 
data sets and non-linear features, making it an effective 
choice for predicting software defects [26]. In SDP, RF is 
often used because of its robustness to noise in the data 
and its ability to identify the features that contribute most 
to defect prediction, thus improving the reliability of 
software defect detection systems. 

Ensemble learning-based approaches are widely used 
in classification, including Gradient Boosting and 

XGBoost, which play an important role in Software Defect 
Prediction (SDP). Gradient Boosting builds a model 
incrementally with a series of decision trees that mutually 
correct previous prediction errors, resulting in a more 
accurate and outlier-resistant model [27]. Its advantage 
lies in its ability to handle unstructured data as well as 
non-linear relationships between features, making it an 
effective solution in improving defect prediction 
performance [28]. A further development of this method is 
XGBoost (Extreme Gradient Boosting), which is designed 
to improve efficiency and accuracy through decision tree-
based optimization and regularization to reduce overfitting 
[29]. XGBoost excels in handling large datasets and 
capturing complex relationships between features [30], 
making it a reliable choice in various classification tasks, 
including SDP. 

As a more efficient alternative to XGBoost, LightGBM 
(Light Gradient Boosting Machine) was developed to 
improve speed and scalability in the machine learning 
process. The algorithm is designed with a leaf-wise 
growth approach, which allows the processing of large 
amounts of data with less computation time than 
traditional boosting methods [31]. The main advantage of 
LightGBM is the extraordinary performance of LightGBM 
in terms of its precision, model stability, and computing 
efficiency [32]. 

Once the classification model is applied in Software 
Defect Prediction (SDP), the next step is to evaluate its 
performance using appropriate metrics. Two commonly 
used metrics in assessing prediction quality are Accuracy 
and Area Under the Curve (AUC-ROC) [33]. Accuracy 
measures the proportion of correct predictions to the 
overall data [34], making it a simple but less informative 
metric if the dataset suffers from class imbalance. 
Meanwhile, AUC-ROC provides a more comprehensive 
picture by assessing the model's ability to distinguish 
between defect and non-defect classes at various 
thresholds [35], making it more relevant for scenarios with 
uneven data distribution. In the context of SDP, the 
combination of these two metrics is often used to 
understand the extent to which the model can identify 
software defects with accuracy and balance. 

While metrics such as Accuracy and AUC-ROC 
provide an overview of model performance in Software 
Defect Prediction (SDP), the main challenge in this 
research lies in how the comparison between Within-
Project Software Defect Prediction (WP-SDP) and Cross-
Project Software Defect Prediction (CP-SDP) is done 
fairly. Many previous studies have compared these two 
approaches without ensuring that the classification 
methods and resampling techniques used are in an apple-
to-apple condition, so the results obtained cannot always 
be used as a clear reference. As a result, researchers 
often face difficulties in determining the most effective 
strategy to improve defect prediction accuracy, both in the 
context of the same project and across projects. This 
research gap suggests the need for a more systematic 
evaluation of the combination of classification methods 
and resampling techniques to provide more 
comprehensive guidance in the selection of the optimal 
approach for SDP. 
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Due to the need for systematic evaluation in Software 
Defect Prediction, there are still fundamental weaknesses 
in the comparison between WP-SDP and CP-SDP that 
exist in the current literature. The study by Bhat and 
Farooq (2023) used varied pre-processing, evaluation 
metrics, and algorithms making it difficult to obtain a 
consistent comparison between the two methods [36], 
while the study by Zhu et al. (2020) relied too much on 
specific algorithms that could lead to bias [37], and the 
study by Li et al. (2025) has not deeply examined the 
influence of different dataset distributions and 
preprocessing techniques on prediction results [38]. 
Therefore, there is a research gap that needs to be filled 
through a comprehensive study that conducts an apple-
to-apple comparison between WP-SDP and CP-SDP with 
consistent control of experimental variables to obtain a 
more fair and objective evaluation.  

The method proposed in this study is designed to 
ensure a fair comparison between within-project and 
cross-project based software defect prediction. The 
technique utilizes the NASA MDP data set processed in a 
computational framework using Google Colab (runtime: 
Python 3.10, CPU: Intel Xeon 2.30 GHz, RAM: 12 GB, 
GPU: NVIDIA Tesla T4) and Python programming 
language, as shown in FIGURE 1 which presents the 
research flowchart. For the within-project approach (WP-
SDP), data is taken from one project and then divided into 
70% training data and 30% test data. In the cross-project 
approach (CP-SDP), training data is obtained from all 
projects except the project used in WP-SDP, with the 
same 30% of test data used as evaluation points. 
Furthermore, both approaches were applied to three 
types of sampling techniques sampling, oversampling, 
and undersampling which were then evaluated using five 
classification algorithms, namely Support Vector Machine, 
Random Forest, XGBoost, LightGBM, and Gradient 
Boosting, to obtain a comprehensive assessment of the 
effectiveness of software defect prediction. Model 
performance evaluation uses the AUC and the Accuracy 
metric to measure the model's ability to distinguish 
between defect and non-defect classes. This research 
framework is designed to provide a fair comparison 
between software defect prediction based on within-
project and cross project. This study makes four main 
contributions: (1) objective comparison of WP-SDP and 
CP-SDP with identical pre-processing and test data; (2) 
holistic resampling impact analysis for both schemes; (3) 
performance evaluation of modern algorithms such as 
Support Vector Machine, Random Forest, XGBoost, 
LightGBM, and Gradient Boosting in various scenarios; 
and (4) practical data-driven guidance for SDP scheme 
selection according to historical data availability, project 
size, and degree of class imbalance.  

 

2. Materials and Method 
In this study, five machine learning models-Support Vector 
Machine, Random Forest, XGBoost, Gradient Boosting, 
and LightGBM-were used to evaluate the performance of 
three resampling techniques: no sampling, oversampling, 
and undersampling.  Figure 1 shows the research 
workflow. 

 
A. Dataset 

The NASA MDP (Metric Data Program) dataset is a 
collection of data provided by NASA and is widely used in 
software engineering research, particularly in the field of 
software defect prediction. This dataset contains software 
metrics collected from various NASA projects that shows 
in Table 1, including code size, complexity, and the 
number of defects found in the source code. The data is 
obtained through a data collection process that involves 
extracting metrics from source code and recording 
information about software defects based on 
development history. With the NASA MDP dataset, 
researchers can compare various software defect 
prediction methods, such as WPDP and CPDP, under 
apple-to-apple conditions to evaluate the accuracy of the 
models used. The NASA MDP dataset is available 
through the following link: 
https://github.com/klainfo/NASADefectDataset [39]. 

 

Table 1. Nasa MDP Dataset 

Project 
Programming 

Language 
Number of 
Instance 

Defect 
Ratio (%) 

CM1 C 327 12.8 

JM1 Java 7720 20.8 

KC1 Java 1162 25.3 

 

Fig. 1. Research Flowchart 
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KC3 Java 194 18.6 

MC1 C and C++ 1988 2.3 

MC2 C 125 35.2 

MW1 C 253 10.7 

PC1 C 705 8.7 

PC2 C 745 2.1 

PC3 C 1077 12.4 

PC4 C 1287 13.8 

PC5 C++ 1711 27.5 

 

B. Data Processing and Partitioning 

When working with a biased dataset, it is important to fix 
imbalances in the training data. One effective method is 
resampling, which balances the number of instances from 
majority and minority classes.  Additionally, we perform 
feature alignment in preprocessing to ensure that the 
same set of attributes is used across all projects before 
sampling, creating a consistent input space for both WP-
SDP and CP-SDP. Previous studies have shown that this 
approach helps create a more representative dataset for 
training [40]. 

Data sampling is generally divided into 
two,  oversampling, and undersampling [41]. We chose 
random resampling specifically for its simplicity and 
reproducibility: it allows us to adjust class distributions 
without introducing additional heuristics, and by fixing a 
seed value we ensure identical behavior across runs. 
Furthermore, no class weighting or hyperparameter 
tuning was applied, so that all observed performance 
differences can be attributed solely to the sampling 
scheme and classifier choice. 

Random resampling is a basic method provided by 
Python libraries such as imbalanced-learn to perform data 
balancing by randomizing and selecting random samples 
from a dataset. This method serves as the foundation for 
applying both oversampling and undersampling 
techniques. By using the functions provided by the library, 
the class distribution in the dataset can be adjusted so 
that the prediction model can be trained with balanced 
data. 

1) Random oversampling is a technique used to 
enhance the representation of the minority class by 
duplicating a selected number of its samples, 
sometimes with slight modifications, thereby 
addressing class imbalance [42]. This method 
calculates the total samples after oversampling 
as N₀+ k×N₁, where N₀ represents the number of 

majority class samples, N₁ the number of minority 

samples, and k is typically set to 1 or 2. Additionally, 
by randomly selecting minority class examples with 
replacement, the technique effectively increases the 
dataset size and contributes to a more balanced 
training process [43]. However, the duplicated data 
from the minority class can have the same value 
(redundant), increasing the chance of overfitting [44]. 

2) Random undersampling (RUS) is a non-heuristic 
technique used to balance imbalanced datasets by 
reducing the number of samples in the majority class 
rather than replicating minority class instances [45]. 
Instead of adding more data to the minority class, 
this method randomly removes samples from the 
majority class to achieve a balanced distribution, 
thereby lowering the dataset's size. While this 
reduction can significantly decrease training time 
and computational cost, it runs the risk of eliminating 
critical data points that might be valuable for 
accurate model training [46]. Consequently, the 
efficiency gains from RUS must be carefully weighed 
against the potential degradation in classification 
performance that may result from losing important 
information. 

A common approach for validating models is to split the 
data into two parts: one for training and one for testing. In 
this approach, the dataset is divided such that the training 
subset is used to build the model, while the testing subset 
is reserved for evaluating its performance. By separating 
the data in this way, an unbiased assessment of the 
model's predictive capabilities is ensured, and concerns 
about overfitting on the training data are minimized [47]. 
In this study, we used a 70:30 split where 70 is used for 
model training data and 30 is used as test data. This ratio 
provides a balance between providing enough samples 
for the model to learn complex patterns and retaining 
unseen data to reliably measure its generalization 
performance; it is a generally accepted convention that 
offers stable estimates without overly restricting training 
or evaluation. 

 

C. Classification Algorithms 

Classification algorithms are an important component in 
machine learning, especially in software defect prediction. 
Various algorithms are developed to classify data into 
defect and non-defect categories based on features. In 
this research, we use five popular classification 
algorithms, namely Support Vector Machine (SVM), 
Random Forest (RF), XGBoost, Gradient Boosting, and 
LightGBM. Each algorithm has its advantages in 
processing data, overcoming class imbalance, and 
achieving high prediction accuracy. 

1) Support Vector Machine (SVM) 

Support Vector Machine (SVM) is an effective 
supervised learning model for binary classification, 
particularly suitable for datasets with limited sample 
sizes [48]. In Software Defect Prediction (SDP) 
research, SVM is employed to predict software defect 
class labels by constructing an optimal hyperplane that 
maximizes the separation margin between instances of 
the two classes (Figure 2). This hyperplane, visualized 
in a two-dimensional feature space, is defined by the 
maximum distance to the nearest data points (support 
vectors) from both classes, thereby enhancing 
prediction accuracy [49]. 
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The strength of SVM lies in its flexibility to process both 
linear and nonlinear data through kernel functions such as 
Radial Basis Function (RBF) or polynomials, unlike 
association rule methods that are confined to linear data 
[50]. The selection of kernel type, size, and parameters 
like gamma significantly influences the smoothness of 
class separation and prevents overfitting [51]. This 
combination of high computational efficiency and 
adaptability positions SVM as an efficient solution for 
SDP, especially in detecting hidden defect patterns within 
program code. 

 
2) Random Forest (RF) 

Random Forest (RF) is an ensemble algorithm designed 
to enhance prediction accuracy and stability by 
aggregating outputs from multiple decision trees [52]. 
Each tree is trained on randomly selected subsets of data 
and features, which mitigates overfitting risks while 
ensuring robustness in handling datasets with complex, 
high-dimensional features [53]. The final prediction is 
determined through majority voting, where the most 
frequent class label across all trees is selected [54]. This 
hierarchical approach recursively partitions data into 
subgroups based on splitting criteria until termination 
conditions are met, with terminal segments (leaf nodes) 
representing definitive classifications. 

 

The input space is recursively divided using axis-aligned 
boundaries, where splits occur along coordinates parallel 
to feature axes. For instance, an initial partition is 
executed at the threshold ×₂ ≥ α₂, followed by subsequent 

subdivisions: the left subspace is split at ×₁ ≥ α₄, while the 

right subspace undergoes splits at ×₁ ≥ α₁ and ×₂ ≥ α₃. 
This hierarchical division generates distinct regions, as 
systematically illustrated in prior studies (Figure 3) [55]. 

 
3) XGBoost 

XGBoost is a powerful ensemble learning method based 
on gradient boosting, designed for scalability and high 
performance on complex datasets [56]. It builds an 
additive model by sequentially minimizing a loss function, 
which combines the error term and a regularization 
component to control model complexity. This overall 

objective can be formulated as in Eq. (1) and Eq. (2): 

𝐿𝑥𝑔𝑏 = ∑𝐿

𝑁

𝑖=1

(𝑦𝑖 , 𝐹(𝑥𝑖)) + ∑ 𝛺

𝑀

𝑚=1

(ℎ𝑚) 

(1) 
where the regularization term is defined as 

𝛺(ℎ) = 𝛾𝑇 +
1

2
‖𝑤‖2 

(2) 
In addition to its elegant formulation, XGBoost 

incorporates advanced techniques such as random 
subsampling and column sampling to reduce overfitting 
and enhance training speed [57]. Each new decision tree 
is added to the ensemble with the specific goal of 
correcting the errors made by the previous trees, resulting 
in an iterative refinement process that boosts overall 
performance. These methodological choices make 
XGBoost not only efficient but also highly effective in 
handling large-scale and complex machine learning 
problems [58]. 

 
4) Gradient boosting 
Gradient boosting is a powerful ensemble learning 
method that iteratively combines multiple weak learners 
into a strong predictive model [59]. Initially introduced by 
Friedman in 2001, this technique is widely applied in both 
regression and classification tasks, assigning specific 
weights to data points to guide the learning process. The 
method builds an additive model where each successive 
learner focuses on the residuals the errors made by the 
combined predictions of its predecessors. When decision 
trees serve as the base classifiers, the overall model can 
be expressed by the summation of regression trees as 
follows in Eq. (3): 

𝐹𝑛(𝑥𝑡) = ∑𝑓𝑖

𝑛

𝑖=1

(𝑥𝑡) 

(3) 

where each fi(×t) represents an individual regression tree. 

In every iteration, gradient boosting fits a new learner to 
the residual errors derived from the previous iterations, 
utilizing gradient-based optimization instead of relying 
solely on misclassification weights like those in AdaBoost 
[60]. This process, while effective in improving accuracy, 
requires careful regularization such as applying shrinkage 
(reducing the gradient descent step size) and restricting 
the complexity of the decision trees (for example, by 
limiting their depth) to prevent overfitting [61]. Moreover, 

 

Fig. 2. The implementation of SVM using an 
optimal hyperplane and maximum margin for 
data classification. 

 

 

 

 

 

Fig. 3. A graphical representation of the 
decision tree 
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incorporating randomization techniques, such as random 
sub sampling without replacement, further enhances the 
model's generalization capabilities by introducing 
variability during training. These combined strategies 
enable gradient boosting to deliver highly accurate 
models even in complex and noisy data environments. 

 
5) LightGBM 
LightGBM is an innovative gradient boosting framework 
that leverages decision tree-based learning to achieve 
both speed and scalability [62]. Developed to efficiently 
handle large-scale and complex datasets, it incorporates 
advanced techniques such as gradient-based one-side 
sampling (GOSS) and exclusive feature bundling (EFB) to 
reduce the volume of data and the number of features 
without sacrificing essential information. Moreover, it 
employs a histogram-based learning method combined 
with a leaf-wise tree growth strategy under a depth limit, 
which further enhances training speed and model 
accuracy [63]. 

In addition to its robust architectural design, LightGBM 
is widely recognized for its high-performance computing 
capabilities in distributed environments [64]. It supports 
GPU acceleration and parallel learning, which 
significantly lowers memory consumption and speeds up 
the training process across various machine learning 
tasks such as regression, ranking, and classification. 
Furthermore, by intensifying the focus on misclassified 
instances during successive iterations, LightGBM refines 
weak learners into a strong ensemble model that has 
been shown to outperform many traditional boosting 
algorithms. A unique feature that distinguishes the 
LightGBM algorithm from other gradient boosting tree 
methods is its splitting tree, as depicted in the Figure 4. 

 

The five classifiers SVM, Random Forest, XGBoost, 
Gradient Boosting, and LightGBM were chosen for their 
complementary strengths in addressing key challenges in 
defect prediction. SVM handles high-dimensional data 
and nonlinear patterns via kernels, while Random Forest 
reduces overfitting and excels with imbalanced data. 
XGBoost and Gradient Boosting optimize complex 
decision boundaries through sequential error correction, 
ideal for generalization. LightGBM prioritizes efficiency 
and scalability for large datasets. Together, they enable a 
balanced comparison of linear, tree-based, and gradient-
boosted approaches across WP-SDP and CP-SDP 
scenarios. 
 
D. Dataset 
Performance metrics offer quantifiable measures to 
evaluate how well software defect prediction models 

perform in classification tasks. To achieve an objective 
assessment, it is advisable to use a combination of widely 
accepted metrics, such as accuracy, rather than relying 
on a single indicator. Accuracy is one of the most 
commonly understood evaluation metrics, indicating the 
ratio of correctly predicted instances to the overall number 

of instances in the dataset [65]. The formula used is in Eq. 
(4). 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

(4) 
Among these metrics, AUC (Area Under the Curve) 

stands out as a robust measure of a model's ability to 
distinguish between defect and non-defect classes 
independent of any threshold. AUC reflects the probability 
that a defective module will be scored higher than a non-
defective one, providing a nuanced view of the model's 
classification performance even in the presence of 
imbalanced or noisy datasets. Recent research [66] has 
demonstrated that AUC is a reliable indicator in evaluating 
the effectiveness of software defect prediction models, 
reinforcing its role in ensuring a comprehensive and 
objective evaluation. The formula used is shown in Eq. 
(5). 

𝐴𝑈𝐶 =
(

𝑇𝑃
𝑇𝑃 + 𝐹𝑁) + (

𝑇𝑁
𝑇𝑁 + 𝐹𝑃)

2
 

(5) 
3. Results 

This study evaluates the performance of five classification 
algorithms Random Forest (RF), Support Vector Machine 
(SVM), XGBoost (XGB), Gradient Boosting (GB), and 
LightGBM (LGBM) on two software defect prediction 
(SDP) schemes: Within Project (WP-SDP) and Cross 
Project (CP-SDP). To address the class imbalance, three 
resampling strategies (no sampling, undersampling, and 
oversampling) are applied. The dataset is divided into a 
training-testing ratio of 70:30 to ensure a robust 
evaluation of generalization ability. Performance metrics, 
including Accuracy and AUC, are measured to compare 
the effectiveness of each configuration. Notably, the study 
produced up to 360 distinct sets of AUC and accuracy 
data, reflecting a variety of outcomes across different 
experimental settings. 

Experiments on 12 NASA MDP projects show 
performance variations between Cross-Project Software 
Defect Prediction (CP-SDP) and Within-Project Software 
Defect Prediction (WP-SDP) schemes as shown in Table 
2. Overall, WP-SDP dominated by excelling in 8 out of 12 
projects, while CP-SDP showed effectiveness in 4 
projects, especially in small-sized projects such as MW1 
and PC1. The combination of resampling and tree-based 
classification techniques (such as Random Forest) 
proved to be the most consistent in delivering high 
performance. 

The absolute best configuration was achieved by WP-
SDP on project PC4 with oversampling and Random 
Forest classification, resulting in an Accuracy of 89.92% 
and an AUC of 0.931. The scheme also excelled on 
projects PC2 (AUC 0.917) and MC1 (AUC 0.908), 

 

Fig. 4. Leaf-wise tree growth in LightGBM 
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demonstrating its ability to handle class imbalance when 
project historical data is sufficient. On the other hand, 
CPDP recorded the highest result in MW1 (AUC 0.929 
with no sampling and Random Forest), indicating that 
cross-project prediction can be competitive if the 
characteristics of the source and target projects are 
homogeneous. 

 

Table 2. Comparison of the best performance 
between the WP-SDP and CP-SDP methods per class 
on the NASA MDP dataset highlighting the 
performance advantages of each technique in 
handling each class of data. 
 

Proje

ct 
Method 

Sampli

ng 

Classifi

er 

ACC 

(%) 
AUC 

CM1 CP-SDP No RF 84.85 0.801 

JM1 WP-SDP Over GB 70.11 0.691 

KC1 WP-SDP Under GB 67.89 0.719 

KC3 CP-SDP Over LGBM 76.27 0.762 

MC1 WP-SDP Under GB 78.22 0.908 

MC2 WP-SDP Under GB 68.42 0.833 

MW1 CP-SDP No RF 89.47 0.929 

PC1 CP-SDP Over LGBM 80.19 0.862 

PC2 WP-SDP Under RF 78.13 0.917 

PC3 WP-SDP Under LGBM 75 0.795 

PC4 WP-SDP Over RF 89.92 0.931 

PC5 WP-SDP Over RF 74.32 0.754 

 

The oversampling technique significantly improves 
SDP performance, especially on large projects such as 
PC4 (+0.15 AUC compared to no sampling). However, 
undersampling is more effective for projects with 
moderate class imbalance such as MC1 (AUC 0.908) and 
PC2 (AUC 0.917). Meanwhile, CPDP achieved optimal 
performance without resampling techniques (no 
sampling) in MW1 and CM1, suggesting that data 
reduction or augmentation may remove important 
patterns across projects. 

Random Forest was the most reliable algorithm, 
topping the rankings in 6 projects (e.g. PC4, MW1, CM1) 
with an average AUC of 0.893. Boosting-based classifiers 
such as LightGBM and Gradient Boosting showed mixed 
results: LightGBM excelled in PC1 (0.862 AUC with 
CPDP), while Gradient Boosting had the lowest 
performance in JM1 (0.691 AUC) due to its sensitivity to 
data noise. 

Project JM1 recorded the worst result (AUC 0.691 with 

SDP + oversampling + Gradient Boosting), presumably 
due to the complexity of the code and the poorly 
represented feature distribution in the training data. On 
the other hand, KC1 and KC3 (AUC 0.719 and 0.762) 
show that the combination of SDP/CPDP with 
undersampling or oversampling can moderately 
overcome class imbalance. 

We present paired t-test results for Random Forest on 
just two projects PC4 under WP-SDP (Table 3) and MW1 
under CP-SDP (Table 4) selected because they achieved 
the highest performance in their respective schemes and 
thus serve as clear, representative examples. In each 
project, the comparison between no sampling and 
oversampling shows no significant difference in Accuracy 
or AUC, confirming that duplicating minority instances 
does not materially alter RF’s performance when ample 
data is available (PC4) or when source and target 
datasets share strong homogeneity (MW1). By contrast, 
both no sampling versus undersampling and 
oversampling versus undersampling exhibit significant 
declines in both metrics (p < 0.05), underscoring that 
removing majority-class examples impairs the model’s 
ability to capture defect patterns. These results reinforce 
our recommendation to favor oversampling over 
undersampling for Random Forest in high-data scenarios 
and to rely on unsampled CP-SDP when project 
characteristics are closely aligned, demonstrating that our 
findings remain consistent across multiple runs. 

 

Table 3. Paired t-test results of project PC4 
representing WP-SDP 

 

Com

paris

on 

t-stat 

(ACC) 

p-

value 

(ACC) 

Sig. 

ACC 

t-stat 

(AUC) 

p-

value 

(AUC) 

Sig. 

AU

C 

No vs 

Over 
1.24 0.249 No -0.15 0.887 No 

No vs 

Under 
2.84 0.02 Yes 3.21 0.012 Yes 

Over vs 

Under 
3.55 0.006 Yes 3.87 0.004 Yes 

Table 4. Paired t-test results of project MW1 
representing CP-SDP 

 

Comp

arison 

t-stat 

(ACC) 

p-

value 

(ACC) 

Sig. 

ACC 

t-stat 

(AUC) 

p-

value 

(AUC) 

Sig. 

AU

C 

No vs 

Over 
1.24 0.249 No −0.15 0.887 No 

No vs 

Under 
2.84 0.02 Yes 3.21 0.012 Yes 
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Over 

vs 

Under 

3.55 0.006 Yes 3.87 0.004 Yes 

 
4. Discussion 

The results show that the performance of software defect 
prediction is highly dependent on the selection of 
schemes, resampling strategies, and classification 
algorithms. WP-SDP tends to excel in most cases, 
especially when oversampling is combined with an 
ensemble algorithm such as Random Forest, resulting in 
an AUC of 0.931 on one major project. On the other hand, 
CP-SDP also showed superiority on certain projects, 
especially on a small project such as MW1 which obtained 
an AUC of 0.929 without the application of resampling. 
This finding confirms that local data patterns are a key 
factor affecting model accuracy and allows WP-SDP to 
show consistent results on projects with adequate data 
representation. In general, WP-SDP benefits from richer, 
project-specific histories its models learn nuanced defect 
patterns when ample examples are available whereas 
CP-SDP shines on smaller datasets by leveraging 
broader experience from other projects to compensate for 
limited local observations. Overall, an in-depth analysis of 
this experiment revealed that the method configuration 
and dataset characteristics must be adjusted to achieve 
optimal prediction results. 

In the study by N. A. Bhat and S. U. Farooq (2023), they 
found that local data has an important role in maintaining 
defect patterns, which aligns with our WP-SDP 
superiority. Meanwhile, in the study by Zhu et al. (2020), 
the transfer learning method with feature weighting 
improves the effectiveness of CP-SDP on projects with 
homogeneous characteristics, which is in line with the 
results that show CP-SDP excels in MW1. In addition, 
research by T. Li, Z. Wang, and P. Shi (2025) proposed 
model fusion to optimize prediction, which supports our 
findings regarding the reliability of the Random Forest 
algorithm in reducing noise and handling non-linear 
features. A comparison of these three studies shows that 
although the approaches used are different, they all 
emphasize the importance of tailoring the method to the 
characteristics of the available data. This indicates that 
collaboration between local techniques and across 
projects can open up opportunities to combine the 
strengths of each approach in creating more adaptive 
defect prediction systems. 

This research has several limitations that need to be 
considered for the interpretation of the results and further 
development of the method. First, the number of projects 
used is limited to the NASA MDP dataset, so the results 
may not be generalizable to all types of software projects. 
To address this, future work should include diverse 
repositories such as GitHub or JIRA and assess 
transferability across domains. Second, the 
hyperparameter configuration for the classification 
algorithm has not been optimized in depth, which could 
potentially affect performance, especially in models such 
as Gradient Boosting that show sensitivity to noise. A 

systematic tuning campaign or automated search could 
mitigate this gap. Third, the application of oversampling 
and undersampling techniques in CP-SDP schemes 
sometimes results in bias, as not all projects require data 
manipulation to achieve prediction stability. Adaptive or 
hybrid sampling approaches that respond to each 
project’s imbalance level may overcome this issue. 
Fourth, the comparison between WP-SDP and CP-SDP 
has not been accompanied by an in-depth quantitative 
analysis of the similarity of characteristics between 
projects so that adjustments to the method can be made 
more systematically. Incorporating metrics of project 
similarity or domain distance could guide better method 
selection. 

The research has broad implications for practitioners 
and researchers in the field of software engineering. The 
results show that the selection of prediction methods must 
carefully consider local data characteristics and uniformity 
between projects so that WP-SDP can be prioritized on 
projects with data that represents the actual conditions of 
development. For developers, the use of oversampling 
and ensemble algorithms such as Random Forest is an 
effective solution to overcome the problem of class 
imbalance, especially in large-scale projects. The findings 
also suggest that different resampling strategies can be 
applied based on the level of data imbalance, such as 
undersampling for cases with moderate imbalance. 
Furthermore, the findings from this study open up 
opportunities for the integration of transfer learning and 
model averaging approaches to improve prediction 
efficiency and accuracy in more diverse industrial 
applications. In a real-world setting, teams with extensive 
historical logs could default to WP-SDP, while those 
launching new or smaller codebases might adopt CP-SDP 
to bootstrap their prediction pipelines; our framework thus 
serves as a practical guide for method selection in live 
projects. 

 

5. Conclusion 

This study aims to compare the effectiveness of Cross-
Project (CP-SDP) and Within-Project (WP-SDP) defect 
prediction schemes using the NASA MDP dataset, 
considering resampling techniques (undersampling, 
oversampling, no sampling) and the performance of five 
classifiers. Results show that WP-SDP excels in 8 out of 
12 projects, with the highest performance in project PC4 
(AUC 0.931, Accuracy 89.92%) using oversampling and 
Random Forest. Meanwhile, CP-SDP was effective in 
homogeneous projects such as MW1 (AUC 0.929, 
Accuracy 89.47%) with no sampling and Random Forest. 
The oversampling technique improves the performance of 
WP-SDP by 15%, while undersampling is optimal for 
projects with moderate class imbalance. Random Forest 
was the best classifier (excelling in 6 projects), while 
Gradient Boosting was susceptible to data noise (lowest 
AUC 0.691 in JM1). 

Further research is recommended to test the 
generalizability of these findings to non-NASA datasets 
(e.g. GitHub/JIRA) and integrate cost-sensitive metrics to 
reflect the risk of false negatives in the real world. Building 
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on our observation that CP-SDP often struggles with 
distribution shifts while WP-SDP falters when data is 
scarce, future work should explore transfer learning 
strategies that can adapt models trained on mature 
projects to emerging ones, effectively bridging the gap 
between inter and intra project data. Likewise, hybrid 
sampling techniques which intelligently combine 
oversampling of minority cases with targeted 
undersampling of noisy majority instances could mitigate 
class imbalance more robustly than single-method 
schemes, as our results showed oversampling increased 
recall but sometimes inflated false positives, and 
undersampling reduced training cost at the expense of 
lost information. Incorporating model interpretability 
analyses such as SHAP values will help reveal which 
features drive predictions across both WP and CP 
settings, guiding more transparent defect prediction 
pipelines. The findings provide practical guidance for 
developers in selecting defect prediction schemes 
according to historical data availability, project 
characteristics, and algorithm complexity, so that software 
quality optimization can be performed more efficiently. 
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