Hybrid Autoencoder Architectures with LSTM and GRU Layers for Bitcoin Price Prediction

Cryptocurrency; Univariate; Bitcoin

Authors

August 12, 2025
September 14, 2025
October 26, 2025

Downloads

The high volatility of cryptocurrency markets, particularly Bitcoin, poses significant challenges for accurate price forecasting. To address this issue, this study evaluates the performance of four autoencoder-based deep learning architectures: AE-LSTM, AE-GRU, AE-LSTM-GRU, and AE-GRU-LSTM. The models were developed and tested using a univariate approach, where only the closing price was used as input, and two different window sizes (30 and 60) were applied to analyse the effect of historical sequence length on prediction accuracy. Several parameter configurations, including the number of epochs, dropout rate, and learning rate, were explored to determine the optimal model performance. The dataset comprises Bitcoin’s daily closing prices from 2018 to 2025, encompassing diverse market phases, including both bullish and bearish trends. Model performance was assessed using four evaluation metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), the coefficient of determination (R²), and Mean Absolute Percentage Error (MAPE). The results indicate that the AE-LSTM-GRU consistently achieved the best overall performance across all configurations. For a window size of 30, it achieved an RMSE of 1.53067 and a MAPE of 1.98%, while for a window size of 60, the best performance recorded was an RMSE of 1.55217 and a MAPE of 2.09%. The hybrid structure combining LSTM’s capability to capture long-term dependencies with GRU’s efficiency in information decoding demonstrated strong robustness in modelling highly volatile time series. This study contributes to financial time series forecasting by presenting hybrid autoencoder architectures that strike a balance between predictive accuracy and computational efficiency, providing practical insights for researchers and practitioners in financial technology and cryptocurrency analytics

How to Cite

Yamasari, Y., Nafisah, N. ., & Yohannes, . E. (2025). Hybrid Autoencoder Architectures with LSTM and GRU Layers for Bitcoin Price Prediction. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 7(4), 687-700. https://doi.org/10.35882/ijeeemi.v7i4.132