Performance Comparison of Variational Mode Decomposition and Butterworth in Processing EEG Signals of Autism Patients
Downloads
Electroencephalography (EEG) is a non-invasive technique for monitoring and recording the brain's electrical activity with electrodes applied to the scalp. The method is important in neurological studies, like that of Autism Spectrum Disorder (ASD), because it measures patterns of brain waves that can identify developmental abnormalities. However, EEG signals are often contaminated by multiple noise sources, including eye movements, muscle activity, and extraneous interference. This interference can significantly reduce the quality and intelligibility of signals. Therefore, preprocessing is required to enhance the reliability and precision of the data obtained. In this study, a Butterworth Band-Pass Filter (BPF) was used during preprocessing to filter out undesirable frequency components and to mitigate noise. After filtering, EEG signals were handled using the Variational Mode Decomposition (VMD) technique. VMD is an adaptive method for decomposing multidimensional signals into intrinsic mode functions while preserving critical details of the original data. For performance comparison, four quantitative metrics were used: Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Signal-to-Noise Ratio (SNR). Results showed that VMD performed better than BPF alone. As an example, for Subject 1, VMD achieved an MAE of 0.26 and MSE of 0.42, which was far superior to the MAE of 13.72 and MSE of 674.96 of BPF. Subject 3 had the least RMSE (0.40) when using VMD, whereas BPF scored 25.90. VMD also reported a highest SNR of 28.56, compared to BPF's 2.43. Overall, integrating VMD with BPF significantly improves EEG signal quality and enables more accurate analysis, particularly in ASD-related studies.
Copyright (c) 2025 Surya Wardana, Melinda Melinda, Rizka Ramdhana, Yunidar Yunidar, Yuwaldi Away, Nurlida Basir (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





