Detection of Electromyography Signal using Dry and Disposable Electrodes on the Bicep Muscle While Lifting Weights
Downloads
One of the biosignals used to identify human muscle impulses is electromyography. Electromyographic signals are often used as input and are designed to help people with disabilities or help the healing process after stroke therapy. According to research, this incident has led to the development of various electromyography module sensor designs to meet different purposes. This research was conducted to make two different electromyography module designs and test these modules simultaneously when the biceps lifted a weight of 3Kg. The aim of this study was to compare the use of disposable and dry electrodes from the two electromyographic sensor module designs that were made. using root mean square (RMS) to find out the difference in tension generated when lifting the barbell. each module detects the biceps signal simultaneously. The biceps are part of the upper limb muscles. Based on the findings of this study, both E1 and E2 electromyography modules with disposable electrodes produced data with a p-value of 0.001766368 less than 0.05. while for the t-test of the two Electromyography modules E1 and E2 with dry electrodes it is 0.001766368 which is less than 0.05. Therefore, it can be concluded that there is a significant difference between the E1 and E2 modules. there is an average amplitude difference of 10mV between E1 and E2 modules when using both types of electrodes. and there is a difference in the average amplitude using dry and disposable electrodes of 30mV. The results of this study can be used to provide insight into the detection of electromyography signals, while the two module designs developed can be applied in future studies to detect electromyography.
Copyright (c) 2022 Farid Amrinsani, Levana Forra Wakidi, Made Dwi Pandya Suryanta, and Dessy Tri Wulandari, Muhammad Tariq Sadiq

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





